A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo
In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving rep...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2020-02, Vol.52 (2), p.146-159 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 146 |
container_title | Nature genetics |
container_volume | 52 |
creator | Nakamori, Masayuki Panigrahi, Gagan B. Lanni, Stella Gall-Duncan, Terence Hayakawa, Hideki Tanaka, Hana Luo, Jennifer Otabe, Takahiro Li, Jinxing Sakata, Akihiro Caron, Marie-Christine Joshi, Niraj Prasolava, Tanya Chiang, Karen Masson, Jean-Yves Wold, Marc S. Wang, Xiaoxiao Lee, Marietta Y. W. T. Huddleston, John Munson, Katherine M. Davidson, Scott Layeghifard, Mehdi Edward, Lisa-Monique Gallon, Richard Santibanez-Koref, Mauro Murata, Asako Takahashi, Masanori P. Eichler, Evan E. Shlien, Adam Nakatani, Kazuhiko Mochizuki, Hideki Pearson, Christopher E. |
description | In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease. |
doi_str_mv | 10.1038/s41588-019-0575-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7043212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614109283</galeid><sourcerecordid>A614109283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</originalsourceid><addsrcrecordid>eNqNkk2L1TAYhYsozjj6A9xIwY0uMr75bLoRylXHgcEBvxZuQm769pohba5Ne9F_b8odZ7yiIFkkvHnOITmconhM4ZQC1y-SoFJrArQmICtJ9J3imEqhCK2ovpvPoCgRwNVR8SClKwAqBOj7xRFnoEDo-rj40pQp-O0WW7JqzspX7xqy9kPrh02ZehtC2ceAbg5Y5unsMJXT6IfZBYyTb5GMuEU7lS4O02jd5OOQMlnu_C4-LO51NiR8dL2fFJ_evP64eksuLs_OV80FcQrkRCSiAqu0wo6xSvOasbbmQK0SFKmDTsF6TSvHuhoc7SQF5FBXSCvJKKsdPyle7n2387rH1uHylGC2o-_t-MNE683hzeC_mk3cmQoEzxbZ4Nm1wRi_zZgm0_vkMAQ7YJyTYVzKmitQC_r0D_QqzuOQv5cpJSkXqhK31MYGNH7o4hLOYmoaRQWFmmmeqdO_UHm12PscKHY-zw8Ezw8ES-j4fdrYOSVz_uH9_7OXnw9ZumfdGFMasbvJjoJZimb2RTO5aGYpmtFZ8-T30G8Uv5qVAbYHUr4aNjjeJvVv158kqdoG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365134674</pqid></control><display><type>article</type><title>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Nakamori, Masayuki ; Panigrahi, Gagan B. ; Lanni, Stella ; Gall-Duncan, Terence ; Hayakawa, Hideki ; Tanaka, Hana ; Luo, Jennifer ; Otabe, Takahiro ; Li, Jinxing ; Sakata, Akihiro ; Caron, Marie-Christine ; Joshi, Niraj ; Prasolava, Tanya ; Chiang, Karen ; Masson, Jean-Yves ; Wold, Marc S. ; Wang, Xiaoxiao ; Lee, Marietta Y. W. T. ; Huddleston, John ; Munson, Katherine M. ; Davidson, Scott ; Layeghifard, Mehdi ; Edward, Lisa-Monique ; Gallon, Richard ; Santibanez-Koref, Mauro ; Murata, Asako ; Takahashi, Masanori P. ; Eichler, Evan E. ; Shlien, Adam ; Nakatani, Kazuhiko ; Mochizuki, Hideki ; Pearson, Christopher E.</creator><creatorcontrib>Nakamori, Masayuki ; Panigrahi, Gagan B. ; Lanni, Stella ; Gall-Duncan, Terence ; Hayakawa, Hideki ; Tanaka, Hana ; Luo, Jennifer ; Otabe, Takahiro ; Li, Jinxing ; Sakata, Akihiro ; Caron, Marie-Christine ; Joshi, Niraj ; Prasolava, Tanya ; Chiang, Karen ; Masson, Jean-Yves ; Wold, Marc S. ; Wang, Xiaoxiao ; Lee, Marietta Y. W. T. ; Huddleston, John ; Munson, Katherine M. ; Davidson, Scott ; Layeghifard, Mehdi ; Edward, Lisa-Monique ; Gallon, Richard ; Santibanez-Koref, Mauro ; Murata, Asako ; Takahashi, Masanori P. ; Eichler, Evan E. ; Shlien, Adam ; Nakatani, Kazuhiko ; Mochizuki, Hideki ; Pearson, Christopher E.</creatorcontrib><description>In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0575-8</identifier><identifier>PMID: 32060489</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/106 ; 14/1 ; 14/63 ; 38/22 ; 38/23 ; 38/77 ; 45/43 ; 631/154/1435 ; 631/208/200 ; 64/60 ; 82 ; Age ; Agriculture ; Animal Genetics and Genomics ; Animals ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Corpus Striatum - drug effects ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; DNA - metabolism ; DNA biosynthesis ; DNA Mismatch Repair - drug effects ; DNA repair ; DNA replication ; DNA Replication - drug effects ; DNA structure ; Gene Function ; Genetic transcription ; High-definition television ; Human Genetics ; Humans ; Huntingtin Protein - genetics ; Huntingtin Protein - metabolism ; Huntington Disease - drug therapy ; Huntington Disease - genetics ; Huntington Disease - pathology ; Huntington's disease ; Huntingtons disease ; Hybridization ; Intermediates ; Male ; Mice ; Mice, Transgenic ; Microsatellite Instability ; Mutants ; Mutation ; Naphthyridines - pharmacology ; Neostriatum ; Pathogenesis ; Polyglutamine ; Proteins ; Quinolones - pharmacology ; Ribonucleases - metabolism ; Spiny neurons ; TATA-Box Binding Protein - genetics ; Transcription ; Transcription, Genetic ; Trinucleotide Repeat Expansion - drug effects ; Trinucleotide repeats</subject><ispartof>Nature genetics, 2020-02, Vol.52 (2), p.146-159</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</citedby><cites>FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</cites><orcidid>0000-0002-1705-5265 ; 0000-0002-0874-7542 ; 0000-0002-9913-680X ; 0000-0001-9545-4205 ; 0000-0001-5750-6051 ; 0000-0001-8413-6498 ; 0000-0002-8246-4014 ; 0000-0002-5513-5012 ; 0000-0001-8696-6962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0575-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0575-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32060489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamori, Masayuki</creatorcontrib><creatorcontrib>Panigrahi, Gagan B.</creatorcontrib><creatorcontrib>Lanni, Stella</creatorcontrib><creatorcontrib>Gall-Duncan, Terence</creatorcontrib><creatorcontrib>Hayakawa, Hideki</creatorcontrib><creatorcontrib>Tanaka, Hana</creatorcontrib><creatorcontrib>Luo, Jennifer</creatorcontrib><creatorcontrib>Otabe, Takahiro</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Sakata, Akihiro</creatorcontrib><creatorcontrib>Caron, Marie-Christine</creatorcontrib><creatorcontrib>Joshi, Niraj</creatorcontrib><creatorcontrib>Prasolava, Tanya</creatorcontrib><creatorcontrib>Chiang, Karen</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Wold, Marc S.</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Lee, Marietta Y. W. T.</creatorcontrib><creatorcontrib>Huddleston, John</creatorcontrib><creatorcontrib>Munson, Katherine M.</creatorcontrib><creatorcontrib>Davidson, Scott</creatorcontrib><creatorcontrib>Layeghifard, Mehdi</creatorcontrib><creatorcontrib>Edward, Lisa-Monique</creatorcontrib><creatorcontrib>Gallon, Richard</creatorcontrib><creatorcontrib>Santibanez-Koref, Mauro</creatorcontrib><creatorcontrib>Murata, Asako</creatorcontrib><creatorcontrib>Takahashi, Masanori P.</creatorcontrib><creatorcontrib>Eichler, Evan E.</creatorcontrib><creatorcontrib>Shlien, Adam</creatorcontrib><creatorcontrib>Nakatani, Kazuhiko</creatorcontrib><creatorcontrib>Mochizuki, Hideki</creatorcontrib><creatorcontrib>Pearson, Christopher E.</creatorcontrib><title>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.</description><subject>13/1</subject><subject>13/106</subject><subject>14/1</subject><subject>14/63</subject><subject>38/22</subject><subject>38/23</subject><subject>38/77</subject><subject>45/43</subject><subject>631/154/1435</subject><subject>631/208/200</subject><subject>64/60</subject><subject>82</subject><subject>Age</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Corpus Striatum - drug effects</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA Mismatch Repair - drug effects</subject><subject>DNA repair</subject><subject>DNA replication</subject><subject>DNA Replication - drug effects</subject><subject>DNA structure</subject><subject>Gene Function</subject><subject>Genetic transcription</subject><subject>High-definition television</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Huntingtin Protein - genetics</subject><subject>Huntingtin Protein - metabolism</subject><subject>Huntington Disease - drug therapy</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - pathology</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Hybridization</subject><subject>Intermediates</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microsatellite Instability</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Naphthyridines - pharmacology</subject><subject>Neostriatum</subject><subject>Pathogenesis</subject><subject>Polyglutamine</subject><subject>Proteins</subject><subject>Quinolones - pharmacology</subject><subject>Ribonucleases - metabolism</subject><subject>Spiny neurons</subject><subject>TATA-Box Binding Protein - genetics</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Trinucleotide Repeat Expansion - drug effects</subject><subject>Trinucleotide repeats</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk2L1TAYhYsozjj6A9xIwY0uMr75bLoRylXHgcEBvxZuQm769pohba5Ne9F_b8odZ7yiIFkkvHnOITmconhM4ZQC1y-SoFJrArQmICtJ9J3imEqhCK2ovpvPoCgRwNVR8SClKwAqBOj7xRFnoEDo-rj40pQp-O0WW7JqzspX7xqy9kPrh02ZehtC2ceAbg5Y5unsMJXT6IfZBYyTb5GMuEU7lS4O02jd5OOQMlnu_C4-LO51NiR8dL2fFJ_evP64eksuLs_OV80FcQrkRCSiAqu0wo6xSvOasbbmQK0SFKmDTsF6TSvHuhoc7SQF5FBXSCvJKKsdPyle7n2387rH1uHylGC2o-_t-MNE683hzeC_mk3cmQoEzxbZ4Nm1wRi_zZgm0_vkMAQ7YJyTYVzKmitQC_r0D_QqzuOQv5cpJSkXqhK31MYGNH7o4hLOYmoaRQWFmmmeqdO_UHm12PscKHY-zw8Ezw8ES-j4fdrYOSVz_uH9_7OXnw9ZumfdGFMasbvJjoJZimb2RTO5aGYpmtFZ8-T30G8Uv5qVAbYHUr4aNjjeJvVv158kqdoG</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Nakamori, Masayuki</creator><creator>Panigrahi, Gagan B.</creator><creator>Lanni, Stella</creator><creator>Gall-Duncan, Terence</creator><creator>Hayakawa, Hideki</creator><creator>Tanaka, Hana</creator><creator>Luo, Jennifer</creator><creator>Otabe, Takahiro</creator><creator>Li, Jinxing</creator><creator>Sakata, Akihiro</creator><creator>Caron, Marie-Christine</creator><creator>Joshi, Niraj</creator><creator>Prasolava, Tanya</creator><creator>Chiang, Karen</creator><creator>Masson, Jean-Yves</creator><creator>Wold, Marc S.</creator><creator>Wang, Xiaoxiao</creator><creator>Lee, Marietta Y. W. T.</creator><creator>Huddleston, John</creator><creator>Munson, Katherine M.</creator><creator>Davidson, Scott</creator><creator>Layeghifard, Mehdi</creator><creator>Edward, Lisa-Monique</creator><creator>Gallon, Richard</creator><creator>Santibanez-Koref, Mauro</creator><creator>Murata, Asako</creator><creator>Takahashi, Masanori P.</creator><creator>Eichler, Evan E.</creator><creator>Shlien, Adam</creator><creator>Nakatani, Kazuhiko</creator><creator>Mochizuki, Hideki</creator><creator>Pearson, Christopher E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1705-5265</orcidid><orcidid>https://orcid.org/0000-0002-0874-7542</orcidid><orcidid>https://orcid.org/0000-0002-9913-680X</orcidid><orcidid>https://orcid.org/0000-0001-9545-4205</orcidid><orcidid>https://orcid.org/0000-0001-5750-6051</orcidid><orcidid>https://orcid.org/0000-0001-8413-6498</orcidid><orcidid>https://orcid.org/0000-0002-8246-4014</orcidid><orcidid>https://orcid.org/0000-0002-5513-5012</orcidid><orcidid>https://orcid.org/0000-0001-8696-6962</orcidid></search><sort><creationdate>20200201</creationdate><title>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</title><author>Nakamori, Masayuki ; Panigrahi, Gagan B. ; Lanni, Stella ; Gall-Duncan, Terence ; Hayakawa, Hideki ; Tanaka, Hana ; Luo, Jennifer ; Otabe, Takahiro ; Li, Jinxing ; Sakata, Akihiro ; Caron, Marie-Christine ; Joshi, Niraj ; Prasolava, Tanya ; Chiang, Karen ; Masson, Jean-Yves ; Wold, Marc S. ; Wang, Xiaoxiao ; Lee, Marietta Y. W. T. ; Huddleston, John ; Munson, Katherine M. ; Davidson, Scott ; Layeghifard, Mehdi ; Edward, Lisa-Monique ; Gallon, Richard ; Santibanez-Koref, Mauro ; Murata, Asako ; Takahashi, Masanori P. ; Eichler, Evan E. ; Shlien, Adam ; Nakatani, Kazuhiko ; Mochizuki, Hideki ; Pearson, Christopher E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/106</topic><topic>14/1</topic><topic>14/63</topic><topic>38/22</topic><topic>38/23</topic><topic>38/77</topic><topic>45/43</topic><topic>631/154/1435</topic><topic>631/208/200</topic><topic>64/60</topic><topic>82</topic><topic>Age</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Corpus Striatum - drug effects</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA Mismatch Repair - drug effects</topic><topic>DNA repair</topic><topic>DNA replication</topic><topic>DNA Replication - drug effects</topic><topic>DNA structure</topic><topic>Gene Function</topic><topic>Genetic transcription</topic><topic>High-definition television</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Huntingtin Protein - genetics</topic><topic>Huntingtin Protein - metabolism</topic><topic>Huntington Disease - drug therapy</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - pathology</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Hybridization</topic><topic>Intermediates</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microsatellite Instability</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Naphthyridines - pharmacology</topic><topic>Neostriatum</topic><topic>Pathogenesis</topic><topic>Polyglutamine</topic><topic>Proteins</topic><topic>Quinolones - pharmacology</topic><topic>Ribonucleases - metabolism</topic><topic>Spiny neurons</topic><topic>TATA-Box Binding Protein - genetics</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Trinucleotide Repeat Expansion - drug effects</topic><topic>Trinucleotide repeats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamori, Masayuki</creatorcontrib><creatorcontrib>Panigrahi, Gagan B.</creatorcontrib><creatorcontrib>Lanni, Stella</creatorcontrib><creatorcontrib>Gall-Duncan, Terence</creatorcontrib><creatorcontrib>Hayakawa, Hideki</creatorcontrib><creatorcontrib>Tanaka, Hana</creatorcontrib><creatorcontrib>Luo, Jennifer</creatorcontrib><creatorcontrib>Otabe, Takahiro</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Sakata, Akihiro</creatorcontrib><creatorcontrib>Caron, Marie-Christine</creatorcontrib><creatorcontrib>Joshi, Niraj</creatorcontrib><creatorcontrib>Prasolava, Tanya</creatorcontrib><creatorcontrib>Chiang, Karen</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Wold, Marc S.</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Lee, Marietta Y. W. T.</creatorcontrib><creatorcontrib>Huddleston, John</creatorcontrib><creatorcontrib>Munson, Katherine M.</creatorcontrib><creatorcontrib>Davidson, Scott</creatorcontrib><creatorcontrib>Layeghifard, Mehdi</creatorcontrib><creatorcontrib>Edward, Lisa-Monique</creatorcontrib><creatorcontrib>Gallon, Richard</creatorcontrib><creatorcontrib>Santibanez-Koref, Mauro</creatorcontrib><creatorcontrib>Murata, Asako</creatorcontrib><creatorcontrib>Takahashi, Masanori P.</creatorcontrib><creatorcontrib>Eichler, Evan E.</creatorcontrib><creatorcontrib>Shlien, Adam</creatorcontrib><creatorcontrib>Nakatani, Kazuhiko</creatorcontrib><creatorcontrib>Mochizuki, Hideki</creatorcontrib><creatorcontrib>Pearson, Christopher E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamori, Masayuki</au><au>Panigrahi, Gagan B.</au><au>Lanni, Stella</au><au>Gall-Duncan, Terence</au><au>Hayakawa, Hideki</au><au>Tanaka, Hana</au><au>Luo, Jennifer</au><au>Otabe, Takahiro</au><au>Li, Jinxing</au><au>Sakata, Akihiro</au><au>Caron, Marie-Christine</au><au>Joshi, Niraj</au><au>Prasolava, Tanya</au><au>Chiang, Karen</au><au>Masson, Jean-Yves</au><au>Wold, Marc S.</au><au>Wang, Xiaoxiao</au><au>Lee, Marietta Y. W. T.</au><au>Huddleston, John</au><au>Munson, Katherine M.</au><au>Davidson, Scott</au><au>Layeghifard, Mehdi</au><au>Edward, Lisa-Monique</au><au>Gallon, Richard</au><au>Santibanez-Koref, Mauro</au><au>Murata, Asako</au><au>Takahashi, Masanori P.</au><au>Eichler, Evan E.</au><au>Shlien, Adam</au><au>Nakatani, Kazuhiko</au><au>Mochizuki, Hideki</au><au>Pearson, Christopher E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><spage>146</spage><epage>159</epage><pages>146-159</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32060489</pmid><doi>10.1038/s41588-019-0575-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1705-5265</orcidid><orcidid>https://orcid.org/0000-0002-0874-7542</orcidid><orcidid>https://orcid.org/0000-0002-9913-680X</orcidid><orcidid>https://orcid.org/0000-0001-9545-4205</orcidid><orcidid>https://orcid.org/0000-0001-5750-6051</orcidid><orcidid>https://orcid.org/0000-0001-8413-6498</orcidid><orcidid>https://orcid.org/0000-0002-8246-4014</orcidid><orcidid>https://orcid.org/0000-0002-5513-5012</orcidid><orcidid>https://orcid.org/0000-0001-8696-6962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2020-02, Vol.52 (2), p.146-159 |
issn | 1061-4036 1546-1718 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7043212 |
source | MEDLINE; Nature; SpringerNature Complete Journals |
subjects | 13/1 13/106 14/1 14/63 38/22 38/23 38/77 45/43 631/154/1435 631/208/200 64/60 82 Age Agriculture Animal Genetics and Genomics Animals Biomarkers Biomedical and Life Sciences Biomedicine Cancer Research Corpus Striatum - drug effects Deoxyribonucleic acid Disease Models, Animal DNA DNA - metabolism DNA biosynthesis DNA Mismatch Repair - drug effects DNA repair DNA replication DNA Replication - drug effects DNA structure Gene Function Genetic transcription High-definition television Human Genetics Humans Huntingtin Protein - genetics Huntingtin Protein - metabolism Huntington Disease - drug therapy Huntington Disease - genetics Huntington Disease - pathology Huntington's disease Huntingtons disease Hybridization Intermediates Male Mice Mice, Transgenic Microsatellite Instability Mutants Mutation Naphthyridines - pharmacology Neostriatum Pathogenesis Polyglutamine Proteins Quinolones - pharmacology Ribonucleases - metabolism Spiny neurons TATA-Box Binding Protein - genetics Transcription Transcription, Genetic Trinucleotide Repeat Expansion - drug effects Trinucleotide repeats |
title | A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20slipped-CAG%20DNA-binding%20small%20molecule%20induces%20trinucleotide-repeat%20contractions%20in%20vivo&rft.jtitle=Nature%20genetics&rft.au=Nakamori,%20Masayuki&rft.date=2020-02-01&rft.volume=52&rft.issue=2&rft.spage=146&rft.epage=159&rft.pages=146-159&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0575-8&rft_dat=%3Cgale_pubme%3EA614109283%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365134674&rft_id=info:pmid/32060489&rft_galeid=A614109283&rfr_iscdi=true |