A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo

In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2020-02, Vol.52 (2), p.146-159
Hauptverfasser: Nakamori, Masayuki, Panigrahi, Gagan B., Lanni, Stella, Gall-Duncan, Terence, Hayakawa, Hideki, Tanaka, Hana, Luo, Jennifer, Otabe, Takahiro, Li, Jinxing, Sakata, Akihiro, Caron, Marie-Christine, Joshi, Niraj, Prasolava, Tanya, Chiang, Karen, Masson, Jean-Yves, Wold, Marc S., Wang, Xiaoxiao, Lee, Marietta Y. W. T., Huddleston, John, Munson, Katherine M., Davidson, Scott, Layeghifard, Mehdi, Edward, Lisa-Monique, Gallon, Richard, Santibanez-Koref, Mauro, Murata, Asako, Takahashi, Masanori P., Eichler, Evan E., Shlien, Adam, Nakatani, Kazuhiko, Mochizuki, Hideki, Pearson, Christopher E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 146
container_title Nature genetics
container_volume 52
creator Nakamori, Masayuki
Panigrahi, Gagan B.
Lanni, Stella
Gall-Duncan, Terence
Hayakawa, Hideki
Tanaka, Hana
Luo, Jennifer
Otabe, Takahiro
Li, Jinxing
Sakata, Akihiro
Caron, Marie-Christine
Joshi, Niraj
Prasolava, Tanya
Chiang, Karen
Masson, Jean-Yves
Wold, Marc S.
Wang, Xiaoxiao
Lee, Marietta Y. W. T.
Huddleston, John
Munson, Katherine M.
Davidson, Scott
Layeghifard, Mehdi
Edward, Lisa-Monique
Gallon, Richard
Santibanez-Koref, Mauro
Murata, Asako
Takahashi, Masanori P.
Eichler, Evan E.
Shlien, Adam
Nakatani, Kazuhiko
Mochizuki, Hideki
Pearson, Christopher E.
description In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats. Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.
doi_str_mv 10.1038/s41588-019-0575-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7043212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614109283</galeid><sourcerecordid>A614109283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</originalsourceid><addsrcrecordid>eNqNkk2L1TAYhYsozjj6A9xIwY0uMr75bLoRylXHgcEBvxZuQm769pohba5Ne9F_b8odZ7yiIFkkvHnOITmconhM4ZQC1y-SoFJrArQmICtJ9J3imEqhCK2ovpvPoCgRwNVR8SClKwAqBOj7xRFnoEDo-rj40pQp-O0WW7JqzspX7xqy9kPrh02ZehtC2ceAbg5Y5unsMJXT6IfZBYyTb5GMuEU7lS4O02jd5OOQMlnu_C4-LO51NiR8dL2fFJ_evP64eksuLs_OV80FcQrkRCSiAqu0wo6xSvOasbbmQK0SFKmDTsF6TSvHuhoc7SQF5FBXSCvJKKsdPyle7n2387rH1uHylGC2o-_t-MNE683hzeC_mk3cmQoEzxbZ4Nm1wRi_zZgm0_vkMAQ7YJyTYVzKmitQC_r0D_QqzuOQv5cpJSkXqhK31MYGNH7o4hLOYmoaRQWFmmmeqdO_UHm12PscKHY-zw8Ezw8ES-j4fdrYOSVz_uH9_7OXnw9ZumfdGFMasbvJjoJZimb2RTO5aGYpmtFZ8-T30G8Uv5qVAbYHUr4aNjjeJvVv158kqdoG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365134674</pqid></control><display><type>article</type><title>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Nakamori, Masayuki ; Panigrahi, Gagan B. ; Lanni, Stella ; Gall-Duncan, Terence ; Hayakawa, Hideki ; Tanaka, Hana ; Luo, Jennifer ; Otabe, Takahiro ; Li, Jinxing ; Sakata, Akihiro ; Caron, Marie-Christine ; Joshi, Niraj ; Prasolava, Tanya ; Chiang, Karen ; Masson, Jean-Yves ; Wold, Marc S. ; Wang, Xiaoxiao ; Lee, Marietta Y. W. T. ; Huddleston, John ; Munson, Katherine M. ; Davidson, Scott ; Layeghifard, Mehdi ; Edward, Lisa-Monique ; Gallon, Richard ; Santibanez-Koref, Mauro ; Murata, Asako ; Takahashi, Masanori P. ; Eichler, Evan E. ; Shlien, Adam ; Nakatani, Kazuhiko ; Mochizuki, Hideki ; Pearson, Christopher E.</creator><creatorcontrib>Nakamori, Masayuki ; Panigrahi, Gagan B. ; Lanni, Stella ; Gall-Duncan, Terence ; Hayakawa, Hideki ; Tanaka, Hana ; Luo, Jennifer ; Otabe, Takahiro ; Li, Jinxing ; Sakata, Akihiro ; Caron, Marie-Christine ; Joshi, Niraj ; Prasolava, Tanya ; Chiang, Karen ; Masson, Jean-Yves ; Wold, Marc S. ; Wang, Xiaoxiao ; Lee, Marietta Y. W. T. ; Huddleston, John ; Munson, Katherine M. ; Davidson, Scott ; Layeghifard, Mehdi ; Edward, Lisa-Monique ; Gallon, Richard ; Santibanez-Koref, Mauro ; Murata, Asako ; Takahashi, Masanori P. ; Eichler, Evan E. ; Shlien, Adam ; Nakatani, Kazuhiko ; Mochizuki, Hideki ; Pearson, Christopher E.</creatorcontrib><description>In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats. Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0575-8</identifier><identifier>PMID: 32060489</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/106 ; 14/1 ; 14/63 ; 38/22 ; 38/23 ; 38/77 ; 45/43 ; 631/154/1435 ; 631/208/200 ; 64/60 ; 82 ; Age ; Agriculture ; Animal Genetics and Genomics ; Animals ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Corpus Striatum - drug effects ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; DNA - metabolism ; DNA biosynthesis ; DNA Mismatch Repair - drug effects ; DNA repair ; DNA replication ; DNA Replication - drug effects ; DNA structure ; Gene Function ; Genetic transcription ; High-definition television ; Human Genetics ; Humans ; Huntingtin Protein - genetics ; Huntingtin Protein - metabolism ; Huntington Disease - drug therapy ; Huntington Disease - genetics ; Huntington Disease - pathology ; Huntington's disease ; Huntingtons disease ; Hybridization ; Intermediates ; Male ; Mice ; Mice, Transgenic ; Microsatellite Instability ; Mutants ; Mutation ; Naphthyridines - pharmacology ; Neostriatum ; Pathogenesis ; Polyglutamine ; Proteins ; Quinolones - pharmacology ; Ribonucleases - metabolism ; Spiny neurons ; TATA-Box Binding Protein - genetics ; Transcription ; Transcription, Genetic ; Trinucleotide Repeat Expansion - drug effects ; Trinucleotide repeats</subject><ispartof>Nature genetics, 2020-02, Vol.52 (2), p.146-159</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</citedby><cites>FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</cites><orcidid>0000-0002-1705-5265 ; 0000-0002-0874-7542 ; 0000-0002-9913-680X ; 0000-0001-9545-4205 ; 0000-0001-5750-6051 ; 0000-0001-8413-6498 ; 0000-0002-8246-4014 ; 0000-0002-5513-5012 ; 0000-0001-8696-6962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0575-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0575-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32060489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamori, Masayuki</creatorcontrib><creatorcontrib>Panigrahi, Gagan B.</creatorcontrib><creatorcontrib>Lanni, Stella</creatorcontrib><creatorcontrib>Gall-Duncan, Terence</creatorcontrib><creatorcontrib>Hayakawa, Hideki</creatorcontrib><creatorcontrib>Tanaka, Hana</creatorcontrib><creatorcontrib>Luo, Jennifer</creatorcontrib><creatorcontrib>Otabe, Takahiro</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Sakata, Akihiro</creatorcontrib><creatorcontrib>Caron, Marie-Christine</creatorcontrib><creatorcontrib>Joshi, Niraj</creatorcontrib><creatorcontrib>Prasolava, Tanya</creatorcontrib><creatorcontrib>Chiang, Karen</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Wold, Marc S.</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Lee, Marietta Y. W. T.</creatorcontrib><creatorcontrib>Huddleston, John</creatorcontrib><creatorcontrib>Munson, Katherine M.</creatorcontrib><creatorcontrib>Davidson, Scott</creatorcontrib><creatorcontrib>Layeghifard, Mehdi</creatorcontrib><creatorcontrib>Edward, Lisa-Monique</creatorcontrib><creatorcontrib>Gallon, Richard</creatorcontrib><creatorcontrib>Santibanez-Koref, Mauro</creatorcontrib><creatorcontrib>Murata, Asako</creatorcontrib><creatorcontrib>Takahashi, Masanori P.</creatorcontrib><creatorcontrib>Eichler, Evan E.</creatorcontrib><creatorcontrib>Shlien, Adam</creatorcontrib><creatorcontrib>Nakatani, Kazuhiko</creatorcontrib><creatorcontrib>Mochizuki, Hideki</creatorcontrib><creatorcontrib>Pearson, Christopher E.</creatorcontrib><title>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats. Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.</description><subject>13/1</subject><subject>13/106</subject><subject>14/1</subject><subject>14/63</subject><subject>38/22</subject><subject>38/23</subject><subject>38/77</subject><subject>45/43</subject><subject>631/154/1435</subject><subject>631/208/200</subject><subject>64/60</subject><subject>82</subject><subject>Age</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Corpus Striatum - drug effects</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA Mismatch Repair - drug effects</subject><subject>DNA repair</subject><subject>DNA replication</subject><subject>DNA Replication - drug effects</subject><subject>DNA structure</subject><subject>Gene Function</subject><subject>Genetic transcription</subject><subject>High-definition television</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Huntingtin Protein - genetics</subject><subject>Huntingtin Protein - metabolism</subject><subject>Huntington Disease - drug therapy</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - pathology</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Hybridization</subject><subject>Intermediates</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microsatellite Instability</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Naphthyridines - pharmacology</subject><subject>Neostriatum</subject><subject>Pathogenesis</subject><subject>Polyglutamine</subject><subject>Proteins</subject><subject>Quinolones - pharmacology</subject><subject>Ribonucleases - metabolism</subject><subject>Spiny neurons</subject><subject>TATA-Box Binding Protein - genetics</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Trinucleotide Repeat Expansion - drug effects</subject><subject>Trinucleotide repeats</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk2L1TAYhYsozjj6A9xIwY0uMr75bLoRylXHgcEBvxZuQm769pohba5Ne9F_b8odZ7yiIFkkvHnOITmconhM4ZQC1y-SoFJrArQmICtJ9J3imEqhCK2ovpvPoCgRwNVR8SClKwAqBOj7xRFnoEDo-rj40pQp-O0WW7JqzspX7xqy9kPrh02ZehtC2ceAbg5Y5unsMJXT6IfZBYyTb5GMuEU7lS4O02jd5OOQMlnu_C4-LO51NiR8dL2fFJ_evP64eksuLs_OV80FcQrkRCSiAqu0wo6xSvOasbbmQK0SFKmDTsF6TSvHuhoc7SQF5FBXSCvJKKsdPyle7n2387rH1uHylGC2o-_t-MNE683hzeC_mk3cmQoEzxbZ4Nm1wRi_zZgm0_vkMAQ7YJyTYVzKmitQC_r0D_QqzuOQv5cpJSkXqhK31MYGNH7o4hLOYmoaRQWFmmmeqdO_UHm12PscKHY-zw8Ezw8ES-j4fdrYOSVz_uH9_7OXnw9ZumfdGFMasbvJjoJZimb2RTO5aGYpmtFZ8-T30G8Uv5qVAbYHUr4aNjjeJvVv158kqdoG</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Nakamori, Masayuki</creator><creator>Panigrahi, Gagan B.</creator><creator>Lanni, Stella</creator><creator>Gall-Duncan, Terence</creator><creator>Hayakawa, Hideki</creator><creator>Tanaka, Hana</creator><creator>Luo, Jennifer</creator><creator>Otabe, Takahiro</creator><creator>Li, Jinxing</creator><creator>Sakata, Akihiro</creator><creator>Caron, Marie-Christine</creator><creator>Joshi, Niraj</creator><creator>Prasolava, Tanya</creator><creator>Chiang, Karen</creator><creator>Masson, Jean-Yves</creator><creator>Wold, Marc S.</creator><creator>Wang, Xiaoxiao</creator><creator>Lee, Marietta Y. W. T.</creator><creator>Huddleston, John</creator><creator>Munson, Katherine M.</creator><creator>Davidson, Scott</creator><creator>Layeghifard, Mehdi</creator><creator>Edward, Lisa-Monique</creator><creator>Gallon, Richard</creator><creator>Santibanez-Koref, Mauro</creator><creator>Murata, Asako</creator><creator>Takahashi, Masanori P.</creator><creator>Eichler, Evan E.</creator><creator>Shlien, Adam</creator><creator>Nakatani, Kazuhiko</creator><creator>Mochizuki, Hideki</creator><creator>Pearson, Christopher E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1705-5265</orcidid><orcidid>https://orcid.org/0000-0002-0874-7542</orcidid><orcidid>https://orcid.org/0000-0002-9913-680X</orcidid><orcidid>https://orcid.org/0000-0001-9545-4205</orcidid><orcidid>https://orcid.org/0000-0001-5750-6051</orcidid><orcidid>https://orcid.org/0000-0001-8413-6498</orcidid><orcidid>https://orcid.org/0000-0002-8246-4014</orcidid><orcidid>https://orcid.org/0000-0002-5513-5012</orcidid><orcidid>https://orcid.org/0000-0001-8696-6962</orcidid></search><sort><creationdate>20200201</creationdate><title>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</title><author>Nakamori, Masayuki ; Panigrahi, Gagan B. ; Lanni, Stella ; Gall-Duncan, Terence ; Hayakawa, Hideki ; Tanaka, Hana ; Luo, Jennifer ; Otabe, Takahiro ; Li, Jinxing ; Sakata, Akihiro ; Caron, Marie-Christine ; Joshi, Niraj ; Prasolava, Tanya ; Chiang, Karen ; Masson, Jean-Yves ; Wold, Marc S. ; Wang, Xiaoxiao ; Lee, Marietta Y. W. T. ; Huddleston, John ; Munson, Katherine M. ; Davidson, Scott ; Layeghifard, Mehdi ; Edward, Lisa-Monique ; Gallon, Richard ; Santibanez-Koref, Mauro ; Murata, Asako ; Takahashi, Masanori P. ; Eichler, Evan E. ; Shlien, Adam ; Nakatani, Kazuhiko ; Mochizuki, Hideki ; Pearson, Christopher E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-5ee60a686ef22783922d9301a641e1c0f60bb17c2f90c1f510e3097e1752129c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/106</topic><topic>14/1</topic><topic>14/63</topic><topic>38/22</topic><topic>38/23</topic><topic>38/77</topic><topic>45/43</topic><topic>631/154/1435</topic><topic>631/208/200</topic><topic>64/60</topic><topic>82</topic><topic>Age</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Corpus Striatum - drug effects</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA Mismatch Repair - drug effects</topic><topic>DNA repair</topic><topic>DNA replication</topic><topic>DNA Replication - drug effects</topic><topic>DNA structure</topic><topic>Gene Function</topic><topic>Genetic transcription</topic><topic>High-definition television</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Huntingtin Protein - genetics</topic><topic>Huntingtin Protein - metabolism</topic><topic>Huntington Disease - drug therapy</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - pathology</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Hybridization</topic><topic>Intermediates</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microsatellite Instability</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Naphthyridines - pharmacology</topic><topic>Neostriatum</topic><topic>Pathogenesis</topic><topic>Polyglutamine</topic><topic>Proteins</topic><topic>Quinolones - pharmacology</topic><topic>Ribonucleases - metabolism</topic><topic>Spiny neurons</topic><topic>TATA-Box Binding Protein - genetics</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Trinucleotide Repeat Expansion - drug effects</topic><topic>Trinucleotide repeats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamori, Masayuki</creatorcontrib><creatorcontrib>Panigrahi, Gagan B.</creatorcontrib><creatorcontrib>Lanni, Stella</creatorcontrib><creatorcontrib>Gall-Duncan, Terence</creatorcontrib><creatorcontrib>Hayakawa, Hideki</creatorcontrib><creatorcontrib>Tanaka, Hana</creatorcontrib><creatorcontrib>Luo, Jennifer</creatorcontrib><creatorcontrib>Otabe, Takahiro</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Sakata, Akihiro</creatorcontrib><creatorcontrib>Caron, Marie-Christine</creatorcontrib><creatorcontrib>Joshi, Niraj</creatorcontrib><creatorcontrib>Prasolava, Tanya</creatorcontrib><creatorcontrib>Chiang, Karen</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Wold, Marc S.</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Lee, Marietta Y. W. T.</creatorcontrib><creatorcontrib>Huddleston, John</creatorcontrib><creatorcontrib>Munson, Katherine M.</creatorcontrib><creatorcontrib>Davidson, Scott</creatorcontrib><creatorcontrib>Layeghifard, Mehdi</creatorcontrib><creatorcontrib>Edward, Lisa-Monique</creatorcontrib><creatorcontrib>Gallon, Richard</creatorcontrib><creatorcontrib>Santibanez-Koref, Mauro</creatorcontrib><creatorcontrib>Murata, Asako</creatorcontrib><creatorcontrib>Takahashi, Masanori P.</creatorcontrib><creatorcontrib>Eichler, Evan E.</creatorcontrib><creatorcontrib>Shlien, Adam</creatorcontrib><creatorcontrib>Nakatani, Kazuhiko</creatorcontrib><creatorcontrib>Mochizuki, Hideki</creatorcontrib><creatorcontrib>Pearson, Christopher E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamori, Masayuki</au><au>Panigrahi, Gagan B.</au><au>Lanni, Stella</au><au>Gall-Duncan, Terence</au><au>Hayakawa, Hideki</au><au>Tanaka, Hana</au><au>Luo, Jennifer</au><au>Otabe, Takahiro</au><au>Li, Jinxing</au><au>Sakata, Akihiro</au><au>Caron, Marie-Christine</au><au>Joshi, Niraj</au><au>Prasolava, Tanya</au><au>Chiang, Karen</au><au>Masson, Jean-Yves</au><au>Wold, Marc S.</au><au>Wang, Xiaoxiao</au><au>Lee, Marietta Y. W. T.</au><au>Huddleston, John</au><au>Munson, Katherine M.</au><au>Davidson, Scott</au><au>Layeghifard, Mehdi</au><au>Edward, Lisa-Monique</au><au>Gallon, Richard</au><au>Santibanez-Koref, Mauro</au><au>Murata, Asako</au><au>Takahashi, Masanori P.</au><au>Eichler, Evan E.</au><au>Shlien, Adam</au><au>Nakatani, Kazuhiko</au><au>Mochizuki, Hideki</au><au>Pearson, Christopher E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><spage>146</spage><epage>159</epage><pages>146-159</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats. Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32060489</pmid><doi>10.1038/s41588-019-0575-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1705-5265</orcidid><orcidid>https://orcid.org/0000-0002-0874-7542</orcidid><orcidid>https://orcid.org/0000-0002-9913-680X</orcidid><orcidid>https://orcid.org/0000-0001-9545-4205</orcidid><orcidid>https://orcid.org/0000-0001-5750-6051</orcidid><orcidid>https://orcid.org/0000-0001-8413-6498</orcidid><orcidid>https://orcid.org/0000-0002-8246-4014</orcidid><orcidid>https://orcid.org/0000-0002-5513-5012</orcidid><orcidid>https://orcid.org/0000-0001-8696-6962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2020-02, Vol.52 (2), p.146-159
issn 1061-4036
1546-1718
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7043212
source MEDLINE; Nature; SpringerNature Complete Journals
subjects 13/1
13/106
14/1
14/63
38/22
38/23
38/77
45/43
631/154/1435
631/208/200
64/60
82
Age
Agriculture
Animal Genetics and Genomics
Animals
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cancer Research
Corpus Striatum - drug effects
Deoxyribonucleic acid
Disease Models, Animal
DNA
DNA - metabolism
DNA biosynthesis
DNA Mismatch Repair - drug effects
DNA repair
DNA replication
DNA Replication - drug effects
DNA structure
Gene Function
Genetic transcription
High-definition television
Human Genetics
Humans
Huntingtin Protein - genetics
Huntingtin Protein - metabolism
Huntington Disease - drug therapy
Huntington Disease - genetics
Huntington Disease - pathology
Huntington's disease
Huntingtons disease
Hybridization
Intermediates
Male
Mice
Mice, Transgenic
Microsatellite Instability
Mutants
Mutation
Naphthyridines - pharmacology
Neostriatum
Pathogenesis
Polyglutamine
Proteins
Quinolones - pharmacology
Ribonucleases - metabolism
Spiny neurons
TATA-Box Binding Protein - genetics
Transcription
Transcription, Genetic
Trinucleotide Repeat Expansion - drug effects
Trinucleotide repeats
title A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20slipped-CAG%20DNA-binding%20small%20molecule%20induces%20trinucleotide-repeat%20contractions%20in%20vivo&rft.jtitle=Nature%20genetics&rft.au=Nakamori,%20Masayuki&rft.date=2020-02-01&rft.volume=52&rft.issue=2&rft.spage=146&rft.epage=159&rft.pages=146-159&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0575-8&rft_dat=%3Cgale_pubme%3EA614109283%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365134674&rft_id=info:pmid/32060489&rft_galeid=A614109283&rfr_iscdi=true