Commensal microbiota drive the functional diversification of colon macrophages

Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mucosal immunology 2020-03, Vol.13 (2), p.216-229
Hauptverfasser: Kang, Byunghyun, Alvarado, Luigi J., Kim, Teayong, Lehmann, Michael L., Cho, Hyeseon, He, Jianping, Li, Peng, Kim, Bong-Hyun, Larochelle, Andre, Kelsall, Brian L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 2
container_start_page 216
container_title Mucosal immunology
container_volume 13
creator Kang, Byunghyun
Alvarado, Luigi J.
Kim, Teayong
Lehmann, Michael L.
Cho, Hyeseon
He, Jianping
Li, Peng
Kim, Bong-Hyun
Larochelle, Andre
Kelsall, Brian L.
description Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2 + precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11c + CD206 int CD121b + and CD11c − CD206 hi CD121b − colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.
doi_str_mv 10.1038/s41385-019-0228-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319197460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-7f47c4e78b0bc8b2183ce7bb2b82a7bc556ea84757edc48c3d339e4d48f39f63</originalsourceid><addsrcrecordid>eNp9kcFPHCEUxkmjqVb7B_TSTOLFyyjwYIBLk2ZTWxOjF-8EGGaXzcywwoyJ_31Z125bEz3xwvd7H4_3IfSF4AuCQV5mRkDyGhNVY0plDR_QMVHAa2C8OXiuoShEHaFPOa8xbjDm8BEdARGCAoVjdLuIw-DHbPpqCC5FG-JkqjaFR19NK1918-imEMeit-Uu5dAFZ7Y3VewqF_tSDKY0blZm6fMpOuxMn_3nl_ME3V_9uF_8qm_ufl4vvt_UjjdsqkXHhGNeSIutk5YSCc4La6mV1AjrOG-8kUxw4VvHpIMWQHnWMtmB6ho4Qd92tpvZDgXx45RMrzcpDCY96WiC_l8Zw0ov46MWGJTEqhicvxik-DD7POkhZOf73ow-zllTIIoowRpc0LNX6DrOqSykUGVCzCVQ-S4FDaWYUbGlyI4qC8s5-W4_MsF6G6neRapLpHobqYbS8_Xfv-47_mRYALoDcpHGpU9_n37b9TfI_az4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362204278</pqid></control><display><type>article</type><title>Commensal microbiota drive the functional diversification of colon macrophages</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Kang, Byunghyun ; Alvarado, Luigi J. ; Kim, Teayong ; Lehmann, Michael L. ; Cho, Hyeseon ; He, Jianping ; Li, Peng ; Kim, Bong-Hyun ; Larochelle, Andre ; Kelsall, Brian L.</creator><creatorcontrib>Kang, Byunghyun ; Alvarado, Luigi J. ; Kim, Teayong ; Lehmann, Michael L. ; Cho, Hyeseon ; He, Jianping ; Li, Peng ; Kim, Bong-Hyun ; Larochelle, Andre ; Kelsall, Brian L.</creatorcontrib><description>Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2 + precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11c + CD206 int CD121b + and CD11c − CD206 hi CD121b − colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.</description><identifier>ISSN: 1933-0219</identifier><identifier>EISSN: 1935-3456</identifier><identifier>DOI: 10.1038/s41385-019-0228-3</identifier><identifier>PMID: 31772323</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Allergology ; Animals ; Antibodies ; Biomedical and Life Sciences ; Biomedicine ; CCR2 protein ; CD11c antigen ; CD11c Antigen - metabolism ; Cell Differentiation ; Cells, Cultured ; Colon ; Colon - immunology ; Dendritic cells ; Dendritic Cells - immunology ; Gastroenterology ; Gene expression ; Gene Ontology ; Gene Regulatory Networks ; Germfree ; Homeostasis ; Immunology ; Intestine ; Lamina propria ; Lectins, C-Type - genetics ; Lectins, C-Type - metabolism ; Leukocytes (mononuclear) ; Localization ; Macromolecules ; Macrophages ; Macrophages - immunology ; Mannose Receptor ; Mannose-Binding Lectins - genetics ; Mannose-Binding Lectins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microbiota ; Monocyte chemoattractant protein 1 ; Myeloid cells ; Myeloid Cells - physiology ; Phagocytes ; Phagocytosis - genetics ; Phenotype ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA ; Single-Cell Analysis ; Specific pathogen free ; Transcription factors ; Transcriptome</subject><ispartof>Mucosal immunology, 2020-03, Vol.13 (2), p.216-229</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-7f47c4e78b0bc8b2183ce7bb2b82a7bc556ea84757edc48c3d339e4d48f39f63</citedby><cites>FETCH-LOGICAL-c564t-7f47c4e78b0bc8b2183ce7bb2b82a7bc556ea84757edc48c3d339e4d48f39f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2475058328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,64384,64386,64388,72340</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31772323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Byunghyun</creatorcontrib><creatorcontrib>Alvarado, Luigi J.</creatorcontrib><creatorcontrib>Kim, Teayong</creatorcontrib><creatorcontrib>Lehmann, Michael L.</creatorcontrib><creatorcontrib>Cho, Hyeseon</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Kim, Bong-Hyun</creatorcontrib><creatorcontrib>Larochelle, Andre</creatorcontrib><creatorcontrib>Kelsall, Brian L.</creatorcontrib><title>Commensal microbiota drive the functional diversification of colon macrophages</title><title>Mucosal immunology</title><addtitle>Mucosal Immunol</addtitle><addtitle>Mucosal Immunol</addtitle><description>Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2 + precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11c + CD206 int CD121b + and CD11c − CD206 hi CD121b − colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.</description><subject>Allergology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>CCR2 protein</subject><subject>CD11c antigen</subject><subject>CD11c Antigen - metabolism</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Colon</subject><subject>Colon - immunology</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Gastroenterology</subject><subject>Gene expression</subject><subject>Gene Ontology</subject><subject>Gene Regulatory Networks</subject><subject>Germfree</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>Intestine</subject><subject>Lamina propria</subject><subject>Lectins, C-Type - genetics</subject><subject>Lectins, C-Type - metabolism</subject><subject>Leukocytes (mononuclear)</subject><subject>Localization</subject><subject>Macromolecules</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Mannose Receptor</subject><subject>Mannose-Binding Lectins - genetics</subject><subject>Mannose-Binding Lectins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microbiota</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - physiology</subject><subject>Phagocytes</subject><subject>Phagocytosis - genetics</subject><subject>Phenotype</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis</subject><subject>Specific pathogen free</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><issn>1933-0219</issn><issn>1935-3456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFPHCEUxkmjqVb7B_TSTOLFyyjwYIBLk2ZTWxOjF-8EGGaXzcywwoyJ_31Z125bEz3xwvd7H4_3IfSF4AuCQV5mRkDyGhNVY0plDR_QMVHAa2C8OXiuoShEHaFPOa8xbjDm8BEdARGCAoVjdLuIw-DHbPpqCC5FG-JkqjaFR19NK1918-imEMeit-Uu5dAFZ7Y3VewqF_tSDKY0blZm6fMpOuxMn_3nl_ME3V_9uF_8qm_ufl4vvt_UjjdsqkXHhGNeSIutk5YSCc4La6mV1AjrOG-8kUxw4VvHpIMWQHnWMtmB6ho4Qd92tpvZDgXx45RMrzcpDCY96WiC_l8Zw0ov46MWGJTEqhicvxik-DD7POkhZOf73ow-zllTIIoowRpc0LNX6DrOqSykUGVCzCVQ-S4FDaWYUbGlyI4qC8s5-W4_MsF6G6neRapLpHobqYbS8_Xfv-47_mRYALoDcpHGpU9_n37b9TfI_az4</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Kang, Byunghyun</creator><creator>Alvarado, Luigi J.</creator><creator>Kim, Teayong</creator><creator>Lehmann, Michael L.</creator><creator>Cho, Hyeseon</creator><creator>He, Jianping</creator><creator>Li, Peng</creator><creator>Kim, Bong-Hyun</creator><creator>Larochelle, Andre</creator><creator>Kelsall, Brian L.</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Commensal microbiota drive the functional diversification of colon macrophages</title><author>Kang, Byunghyun ; Alvarado, Luigi J. ; Kim, Teayong ; Lehmann, Michael L. ; Cho, Hyeseon ; He, Jianping ; Li, Peng ; Kim, Bong-Hyun ; Larochelle, Andre ; Kelsall, Brian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-7f47c4e78b0bc8b2183ce7bb2b82a7bc556ea84757edc48c3d339e4d48f39f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allergology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>CCR2 protein</topic><topic>CD11c antigen</topic><topic>CD11c Antigen - metabolism</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Colon</topic><topic>Colon - immunology</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Gastroenterology</topic><topic>Gene expression</topic><topic>Gene Ontology</topic><topic>Gene Regulatory Networks</topic><topic>Germfree</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>Intestine</topic><topic>Lamina propria</topic><topic>Lectins, C-Type - genetics</topic><topic>Lectins, C-Type - metabolism</topic><topic>Leukocytes (mononuclear)</topic><topic>Localization</topic><topic>Macromolecules</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Mannose Receptor</topic><topic>Mannose-Binding Lectins - genetics</topic><topic>Mannose-Binding Lectins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microbiota</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - physiology</topic><topic>Phagocytes</topic><topic>Phagocytosis - genetics</topic><topic>Phenotype</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis</topic><topic>Specific pathogen free</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Byunghyun</creatorcontrib><creatorcontrib>Alvarado, Luigi J.</creatorcontrib><creatorcontrib>Kim, Teayong</creatorcontrib><creatorcontrib>Lehmann, Michael L.</creatorcontrib><creatorcontrib>Cho, Hyeseon</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Kim, Bong-Hyun</creatorcontrib><creatorcontrib>Larochelle, Andre</creatorcontrib><creatorcontrib>Kelsall, Brian L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mucosal immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Byunghyun</au><au>Alvarado, Luigi J.</au><au>Kim, Teayong</au><au>Lehmann, Michael L.</au><au>Cho, Hyeseon</au><au>He, Jianping</au><au>Li, Peng</au><au>Kim, Bong-Hyun</au><au>Larochelle, Andre</au><au>Kelsall, Brian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commensal microbiota drive the functional diversification of colon macrophages</atitle><jtitle>Mucosal immunology</jtitle><stitle>Mucosal Immunol</stitle><addtitle>Mucosal Immunol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>216</spage><epage>229</epage><pages>216-229</pages><issn>1933-0219</issn><eissn>1935-3456</eissn><abstract>Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2 + precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11c + CD206 int CD121b + and CD11c − CD206 hi CD121b − colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31772323</pmid><doi>10.1038/s41385-019-0228-3</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-0219
ispartof Mucosal immunology, 2020-03, Vol.13 (2), p.216-229
issn 1933-0219
1935-3456
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039809
source MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Allergology
Animals
Antibodies
Biomedical and Life Sciences
Biomedicine
CCR2 protein
CD11c antigen
CD11c Antigen - metabolism
Cell Differentiation
Cells, Cultured
Colon
Colon - immunology
Dendritic cells
Dendritic Cells - immunology
Gastroenterology
Gene expression
Gene Ontology
Gene Regulatory Networks
Germfree
Homeostasis
Immunology
Intestine
Lamina propria
Lectins, C-Type - genetics
Lectins, C-Type - metabolism
Leukocytes (mononuclear)
Localization
Macromolecules
Macrophages
Macrophages - immunology
Mannose Receptor
Mannose-Binding Lectins - genetics
Mannose-Binding Lectins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microbiota
Monocyte chemoattractant protein 1
Myeloid cells
Myeloid Cells - physiology
Phagocytes
Phagocytosis - genetics
Phenotype
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Ribonucleic acid
RNA
Sequence Analysis, RNA
Single-Cell Analysis
Specific pathogen free
Transcription factors
Transcriptome
title Commensal microbiota drive the functional diversification of colon macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commensal%20microbiota%20drive%20the%20functional%20diversification%20of%20colon%20macrophages&rft.jtitle=Mucosal%20immunology&rft.au=Kang,%20Byunghyun&rft.date=2020-03-01&rft.volume=13&rft.issue=2&rft.spage=216&rft.epage=229&rft.pages=216-229&rft.issn=1933-0219&rft.eissn=1935-3456&rft_id=info:doi/10.1038/s41385-019-0228-3&rft_dat=%3Cproquest_pubme%3E2319197460%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362204278&rft_id=info:pmid/31772323&rfr_iscdi=true