Cellulose-graphene quantum dot composite membranes using ionic liquid

Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2018-06, Vol.556, p.293-302
Hauptverfasser: Colburn, A., Wanninayake, N., Kim, D.Y., Bhattacharyya, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue
container_start_page 293
container_title Journal of membrane science
container_volume 556
creator Colburn, A.
Wanninayake, N.
Kim, D.Y.
Bhattacharyya, D.
description Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies. [Display omitted] •Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.
doi_str_mv 10.1016/j.memsci.2018.04.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738818303144</els_id><sourcerecordid>2364039224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EgrL8A4Ry5JIwXpI4FyRUlUVC4sLdcpxJcZXErZ0g8e9xVdYLnOYwb97Mm4-QcwoZBVpcrbIe-2BsxoDKDEQGUO2RGZUlTzllfJ_MgJdFWnIpj8hxCCsAWoKsDskRZ1DlwMWMLObYdVPnAqZLr9cvOGCymfQwTn3SuDExrl-7YEdM4rba6wFDMgU7LBPrBmuSzm4m25ySg1Z3Ac8-6gl5vl08z-_Tx6e7h_nNY2pyzsdUNFpiwU1lDKWtLhnjtIZWFm0uodK5gKKppMbC5LQRAuua1wZbzaHVbSH5Cbne2a6nusfG4DB63am1t732b8ppq353Bvuilu5VlcCrnJbR4PLDwLvNhGFUvQ0mfiDmclNQjBciShkT_0sZixhYXm3PEjup8S4Ej-3XRRTUlpVaqR0rtWWlQKjIKo5d_EzzNfQJ5zsuxpe-WvQqWuBgsLEezagaZ__e8A7O66lU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221012598</pqid></control><display><type>article</type><title>Cellulose-graphene quantum dot composite membranes using ionic liquid</title><source>Elsevier ScienceDirect Journals</source><creator>Colburn, A. ; Wanninayake, N. ; Kim, D.Y. ; Bhattacharyya, D.</creator><creatorcontrib>Colburn, A. ; Wanninayake, N. ; Kim, D.Y. ; Bhattacharyya, D.</creatorcontrib><description>Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (&gt; 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies. [Display omitted] •Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2018.04.009</identifier><identifier>PMID: 32095034</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>acetates ; asymmetric membranes ; cellulose ; Composite membrane ; GQD ; graphene ; graphene oxide ; hydrogen bonding ; hydrophilicity ; ionic liquids ; leaching ; membrane permeability ; moieties ; nanofiltration ; nanoparticles ; Permeability ; Phase inversion ; quantum dots ; separation ; ultrafiltration ; Zeta potential</subject><ispartof>Journal of membrane science, 2018-06, Vol.556, p.293-302</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</citedby><cites>FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0376738818303144$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32095034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colburn, A.</creatorcontrib><creatorcontrib>Wanninayake, N.</creatorcontrib><creatorcontrib>Kim, D.Y.</creatorcontrib><creatorcontrib>Bhattacharyya, D.</creatorcontrib><title>Cellulose-graphene quantum dot composite membranes using ionic liquid</title><title>Journal of membrane science</title><addtitle>J Memb Sci</addtitle><description>Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (&gt; 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies. [Display omitted] •Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.</description><subject>acetates</subject><subject>asymmetric membranes</subject><subject>cellulose</subject><subject>Composite membrane</subject><subject>GQD</subject><subject>graphene</subject><subject>graphene oxide</subject><subject>hydrogen bonding</subject><subject>hydrophilicity</subject><subject>ionic liquids</subject><subject>leaching</subject><subject>membrane permeability</subject><subject>moieties</subject><subject>nanofiltration</subject><subject>nanoparticles</subject><subject>Permeability</subject><subject>Phase inversion</subject><subject>quantum dots</subject><subject>separation</subject><subject>ultrafiltration</subject><subject>Zeta potential</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQhS0EgrL8A4Ry5JIwXpI4FyRUlUVC4sLdcpxJcZXErZ0g8e9xVdYLnOYwb97Mm4-QcwoZBVpcrbIe-2BsxoDKDEQGUO2RGZUlTzllfJ_MgJdFWnIpj8hxCCsAWoKsDskRZ1DlwMWMLObYdVPnAqZLr9cvOGCymfQwTn3SuDExrl-7YEdM4rba6wFDMgU7LBPrBmuSzm4m25ySg1Z3Ac8-6gl5vl08z-_Tx6e7h_nNY2pyzsdUNFpiwU1lDKWtLhnjtIZWFm0uodK5gKKppMbC5LQRAuua1wZbzaHVbSH5Cbne2a6nusfG4DB63am1t732b8ppq353Bvuilu5VlcCrnJbR4PLDwLvNhGFUvQ0mfiDmclNQjBciShkT_0sZixhYXm3PEjup8S4Ej-3XRRTUlpVaqR0rtWWlQKjIKo5d_EzzNfQJ5zsuxpe-WvQqWuBgsLEezagaZ__e8A7O66lU</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Colburn, A.</creator><creator>Wanninayake, N.</creator><creator>Kim, D.Y.</creator><creator>Bhattacharyya, D.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180615</creationdate><title>Cellulose-graphene quantum dot composite membranes using ionic liquid</title><author>Colburn, A. ; Wanninayake, N. ; Kim, D.Y. ; Bhattacharyya, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetates</topic><topic>asymmetric membranes</topic><topic>cellulose</topic><topic>Composite membrane</topic><topic>GQD</topic><topic>graphene</topic><topic>graphene oxide</topic><topic>hydrogen bonding</topic><topic>hydrophilicity</topic><topic>ionic liquids</topic><topic>leaching</topic><topic>membrane permeability</topic><topic>moieties</topic><topic>nanofiltration</topic><topic>nanoparticles</topic><topic>Permeability</topic><topic>Phase inversion</topic><topic>quantum dots</topic><topic>separation</topic><topic>ultrafiltration</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colburn, A.</creatorcontrib><creatorcontrib>Wanninayake, N.</creatorcontrib><creatorcontrib>Kim, D.Y.</creatorcontrib><creatorcontrib>Bhattacharyya, D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colburn, A.</au><au>Wanninayake, N.</au><au>Kim, D.Y.</au><au>Bhattacharyya, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose-graphene quantum dot composite membranes using ionic liquid</atitle><jtitle>Journal of membrane science</jtitle><addtitle>J Memb Sci</addtitle><date>2018-06-15</date><risdate>2018</risdate><volume>556</volume><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><abstract>Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (&gt; 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies. [Display omitted] •Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32095034</pmid><doi>10.1016/j.memsci.2018.04.009</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2018-06, Vol.556, p.293-302
issn 0376-7388
1873-3123
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039517
source Elsevier ScienceDirect Journals
subjects acetates
asymmetric membranes
cellulose
Composite membrane
GQD
graphene
graphene oxide
hydrogen bonding
hydrophilicity
ionic liquids
leaching
membrane permeability
moieties
nanofiltration
nanoparticles
Permeability
Phase inversion
quantum dots
separation
ultrafiltration
Zeta potential
title Cellulose-graphene quantum dot composite membranes using ionic liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose-graphene%20quantum%20dot%20composite%20membranes%20using%20ionic%20liquid&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Colburn,%20A.&rft.date=2018-06-15&rft.volume=556&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0376-7388&rft.eissn=1873-3123&rft_id=info:doi/10.1016/j.memsci.2018.04.009&rft_dat=%3Cproquest_pubme%3E2364039224%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221012598&rft_id=info:pmid/32095034&rft_els_id=S0376738818303144&rfr_iscdi=true