Cellulose-graphene quantum dot composite membranes using ionic liquid
Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cel...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2018-06, Vol.556, p.293-302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | |
container_start_page | 293 |
container_title | Journal of membrane science |
container_volume | 556 |
creator | Colburn, A. Wanninayake, N. Kim, D.Y. Bhattacharyya, D. |
description | Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies.
[Display omitted]
•Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created. |
doi_str_mv | 10.1016/j.memsci.2018.04.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738818303144</els_id><sourcerecordid>2364039224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EgrL8A4Ry5JIwXpI4FyRUlUVC4sLdcpxJcZXErZ0g8e9xVdYLnOYwb97Mm4-QcwoZBVpcrbIe-2BsxoDKDEQGUO2RGZUlTzllfJ_MgJdFWnIpj8hxCCsAWoKsDskRZ1DlwMWMLObYdVPnAqZLr9cvOGCymfQwTn3SuDExrl-7YEdM4rba6wFDMgU7LBPrBmuSzm4m25ySg1Z3Ac8-6gl5vl08z-_Tx6e7h_nNY2pyzsdUNFpiwU1lDKWtLhnjtIZWFm0uodK5gKKppMbC5LQRAuua1wZbzaHVbSH5Cbne2a6nusfG4DB63am1t732b8ppq353Bvuilu5VlcCrnJbR4PLDwLvNhGFUvQ0mfiDmclNQjBciShkT_0sZixhYXm3PEjup8S4Ej-3XRRTUlpVaqR0rtWWlQKjIKo5d_EzzNfQJ5zsuxpe-WvQqWuBgsLEezagaZ__e8A7O66lU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221012598</pqid></control><display><type>article</type><title>Cellulose-graphene quantum dot composite membranes using ionic liquid</title><source>Elsevier ScienceDirect Journals</source><creator>Colburn, A. ; Wanninayake, N. ; Kim, D.Y. ; Bhattacharyya, D.</creator><creatorcontrib>Colburn, A. ; Wanninayake, N. ; Kim, D.Y. ; Bhattacharyya, D.</creatorcontrib><description>Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies.
[Display omitted]
•Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2018.04.009</identifier><identifier>PMID: 32095034</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>acetates ; asymmetric membranes ; cellulose ; Composite membrane ; GQD ; graphene ; graphene oxide ; hydrogen bonding ; hydrophilicity ; ionic liquids ; leaching ; membrane permeability ; moieties ; nanofiltration ; nanoparticles ; Permeability ; Phase inversion ; quantum dots ; separation ; ultrafiltration ; Zeta potential</subject><ispartof>Journal of membrane science, 2018-06, Vol.556, p.293-302</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</citedby><cites>FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0376738818303144$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32095034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colburn, A.</creatorcontrib><creatorcontrib>Wanninayake, N.</creatorcontrib><creatorcontrib>Kim, D.Y.</creatorcontrib><creatorcontrib>Bhattacharyya, D.</creatorcontrib><title>Cellulose-graphene quantum dot composite membranes using ionic liquid</title><title>Journal of membrane science</title><addtitle>J Memb Sci</addtitle><description>Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies.
[Display omitted]
•Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.</description><subject>acetates</subject><subject>asymmetric membranes</subject><subject>cellulose</subject><subject>Composite membrane</subject><subject>GQD</subject><subject>graphene</subject><subject>graphene oxide</subject><subject>hydrogen bonding</subject><subject>hydrophilicity</subject><subject>ionic liquids</subject><subject>leaching</subject><subject>membrane permeability</subject><subject>moieties</subject><subject>nanofiltration</subject><subject>nanoparticles</subject><subject>Permeability</subject><subject>Phase inversion</subject><subject>quantum dots</subject><subject>separation</subject><subject>ultrafiltration</subject><subject>Zeta potential</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQhS0EgrL8A4Ry5JIwXpI4FyRUlUVC4sLdcpxJcZXErZ0g8e9xVdYLnOYwb97Mm4-QcwoZBVpcrbIe-2BsxoDKDEQGUO2RGZUlTzllfJ_MgJdFWnIpj8hxCCsAWoKsDskRZ1DlwMWMLObYdVPnAqZLr9cvOGCymfQwTn3SuDExrl-7YEdM4rba6wFDMgU7LBPrBmuSzm4m25ySg1Z3Ac8-6gl5vl08z-_Tx6e7h_nNY2pyzsdUNFpiwU1lDKWtLhnjtIZWFm0uodK5gKKppMbC5LQRAuua1wZbzaHVbSH5Cbne2a6nusfG4DB63am1t732b8ppq353Bvuilu5VlcCrnJbR4PLDwLvNhGFUvQ0mfiDmclNQjBciShkT_0sZixhYXm3PEjup8S4Ej-3XRRTUlpVaqR0rtWWlQKjIKo5d_EzzNfQJ5zsuxpe-WvQqWuBgsLEezagaZ__e8A7O66lU</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Colburn, A.</creator><creator>Wanninayake, N.</creator><creator>Kim, D.Y.</creator><creator>Bhattacharyya, D.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180615</creationdate><title>Cellulose-graphene quantum dot composite membranes using ionic liquid</title><author>Colburn, A. ; Wanninayake, N. ; Kim, D.Y. ; Bhattacharyya, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-4da8e63c9cc11fa72231b0f86f5809a5406d98ae6c51d44ebb3bcefa30faf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetates</topic><topic>asymmetric membranes</topic><topic>cellulose</topic><topic>Composite membrane</topic><topic>GQD</topic><topic>graphene</topic><topic>graphene oxide</topic><topic>hydrogen bonding</topic><topic>hydrophilicity</topic><topic>ionic liquids</topic><topic>leaching</topic><topic>membrane permeability</topic><topic>moieties</topic><topic>nanofiltration</topic><topic>nanoparticles</topic><topic>Permeability</topic><topic>Phase inversion</topic><topic>quantum dots</topic><topic>separation</topic><topic>ultrafiltration</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colburn, A.</creatorcontrib><creatorcontrib>Wanninayake, N.</creatorcontrib><creatorcontrib>Kim, D.Y.</creatorcontrib><creatorcontrib>Bhattacharyya, D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colburn, A.</au><au>Wanninayake, N.</au><au>Kim, D.Y.</au><au>Bhattacharyya, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose-graphene quantum dot composite membranes using ionic liquid</atitle><jtitle>Journal of membrane science</jtitle><addtitle>J Memb Sci</addtitle><date>2018-06-15</date><risdate>2018</risdate><volume>556</volume><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><abstract>Selective separation of small molecules by membranes is inhibited by the performance gap between nanofiltration and ultrafiltration membranes. In this work, a membrane that can efficiently remove small molecules (> 300 Da) was created by incorporating graphene oxide quantum dots (GQDs) into a cellulose membrane using an ionic liquid (1-ethyl-3-methylimidazolium acetate). Incorporation of GQD into cellulose membranes using an ionic liquid brings several advantages over traditional mixed matrix membranes: 1) GQDs are abundant in peripheral hydroxyl and carboxyl groups, thus GQDs have strong binding with cellulose through hydrogen bonding and forms a stable composite membrane. 2) Negative surface charge of GQDs helps prevent aggregation. 3) The size (5 nm) of GQD is smaller than most nanoparticles used in membranes, allowing for interesting pore forming properties. GQD-cellulose membranes were prepared by non-solvent induced phase separation in water. It was determined that about 45% of GQDs are incorporated from solution to membrane. GQDs were determined to be located on the membrane surface, giving the membrane negative surface charge and improved hydrophilicity. GQDs showed no leaching after convective flow through the membrane. Impact of GQD on membrane permeability and rejection was studied through convective flow experiments, and through longer term permeability studies.
[Display omitted]
•Dissolution of graphene quantum dots (GQD) in ionic liquid and cellulose polymer.•Significant impact of GQD concentration on viscosity of casting solution.•GQD presence throughout the membrane leads to enhanced negatively charged surface.•Confocal fluorescence microscopy also established the presence of GQD in membrane.•Membranes with properties between UF and NF can be created.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32095034</pmid><doi>10.1016/j.memsci.2018.04.009</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-7388 |
ispartof | Journal of membrane science, 2018-06, Vol.556, p.293-302 |
issn | 0376-7388 1873-3123 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039517 |
source | Elsevier ScienceDirect Journals |
subjects | acetates asymmetric membranes cellulose Composite membrane GQD graphene graphene oxide hydrogen bonding hydrophilicity ionic liquids leaching membrane permeability moieties nanofiltration nanoparticles Permeability Phase inversion quantum dots separation ultrafiltration Zeta potential |
title | Cellulose-graphene quantum dot composite membranes using ionic liquid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose-graphene%20quantum%20dot%20composite%20membranes%20using%20ionic%20liquid&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Colburn,%20A.&rft.date=2018-06-15&rft.volume=556&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0376-7388&rft.eissn=1873-3123&rft_id=info:doi/10.1016/j.memsci.2018.04.009&rft_dat=%3Cproquest_pubme%3E2364039224%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221012598&rft_id=info:pmid/32095034&rft_els_id=S0376738818303144&rfr_iscdi=true |