AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells

Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-02, Vol.21 (3), p.994
Hauptverfasser: Garita-Hernandez, Marcela, Routet, Fiona, Guibbal, Laure, Khabou, Hanen, Toualbi, Lyes, Riancho, Luisa, Reichman, Sacha, Duebel, Jens, Sahel, Jose-Alain, Goureau, Olivier, Dalkara, Deniz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 994
container_title International journal of molecular sciences
container_volume 21
creator Garita-Hernandez, Marcela
Routet, Fiona
Guibbal, Laure
Khabou, Hanen
Toualbi, Lyes
Riancho, Luisa
Reichman, Sacha
Duebel, Jens
Sahel, Jose-Alain
Goureau, Olivier
Dalkara, Deniz
description Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs. Thus far, little work has been carried out to investigate mechanisms of AAV-mediated gene delivery and the potential advantages of engineered AAVs to genetically modify retinal organoids. In this study, we compared the early transduction efficiency of several recombinant and engineered AAVs in hiPSC-derived RPE cells and retinal organoids in relation to the availability of their cell-surface receptors and as a function of time. The genetic variant AAV2-7m8 had a superior transduction efficiency when applied at day 44 of differentiation on retinal organoids and provided long-lasting expressions for at least 4 weeks after infection without compromising cell viability. All of the capsids we tested transduced the hiPSC-RPE cells, with the AAV2-7m8 variant being the most efficient. Transduction efficiency was correlated with the presence of primary cell-surface receptors on the hiPS-derived organoids. Our study explores some of the mechanisms of cell attachment of AAVs and reports long-term gene expression resulting from gene delivery in retinal organoids.
doi_str_mv 10.3390/ijms21030994
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7036814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548634024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f056e68d745504db2bf9beb92967dd4e1d7b45cefa3c5a2765b3794115017c593</originalsourceid><addsrcrecordid>eNpdkctr3DAQxkVISdK0t5yDIJcW6kZvW5fAsmmzgQ0pfV2FbI0TLba1leyF_PfVsmnY5qRh5qdvHh9CZ5R85lyTS7_qE6OEE63FATqhgrGCEFUe7sXH6G1KK0IYZ1IfoWPOCKtkJU-Qm81-F3fgvB3B4RsYAF9D5zcQn_AYML_G32H0g-3wfXywQ_AuZSBmwOE2hh4vpt4O-HZwU5NT37op-nUYYRjxjxF6PIeuS-_Qm9Z2Cd4_v6fo19cvP-eLYnl_czufLYtGVHosWiIVqMqVQkoiXM3qVtdQa6ZV6ZwA6spayAZayxtpWalkzUstKJWElo3U_BRd7XTXU92Da_IU0XZmHX1v45MJ1pv_K4N_NA9hY0rCVUVFFvi4E3h89W0xW5ptjjDJK0HUhmb2w3OzGP5MkEbT-9Tkde0AYUqGcckUF1SqjF68QldhivmomZKiyhRh2-afdlQTQ0oR2pcJKDFbq82-1Rk_31_2Bf7nLf8LCJGjQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548634024</pqid></control><display><type>article</type><title>AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Garita-Hernandez, Marcela ; Routet, Fiona ; Guibbal, Laure ; Khabou, Hanen ; Toualbi, Lyes ; Riancho, Luisa ; Reichman, Sacha ; Duebel, Jens ; Sahel, Jose-Alain ; Goureau, Olivier ; Dalkara, Deniz</creator><creatorcontrib>Garita-Hernandez, Marcela ; Routet, Fiona ; Guibbal, Laure ; Khabou, Hanen ; Toualbi, Lyes ; Riancho, Luisa ; Reichman, Sacha ; Duebel, Jens ; Sahel, Jose-Alain ; Goureau, Olivier ; Dalkara, Deniz</creatorcontrib><description>Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs. Thus far, little work has been carried out to investigate mechanisms of AAV-mediated gene delivery and the potential advantages of engineered AAVs to genetically modify retinal organoids. In this study, we compared the early transduction efficiency of several recombinant and engineered AAVs in hiPSC-derived RPE cells and retinal organoids in relation to the availability of their cell-surface receptors and as a function of time. The genetic variant AAV2-7m8 had a superior transduction efficiency when applied at day 44 of differentiation on retinal organoids and provided long-lasting expressions for at least 4 weeks after infection without compromising cell viability. All of the capsids we tested transduced the hiPSC-RPE cells, with the AAV2-7m8 variant being the most efficient. Transduction efficiency was correlated with the presence of primary cell-surface receptors on the hiPS-derived organoids. Our study explores some of the mechanisms of cell attachment of AAVs and reports long-term gene expression resulting from gene delivery in retinal organoids.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21030994</identifier><identifier>PMID: 32028585</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biotechnology ; Capsids ; Cell adhesion ; Cell cycle ; Cell surface ; Cell viability ; Degenerative diseases ; Efficiency ; Gene expression ; Gene therapy ; Gene transfer ; Genetic diversity ; Genetic modification ; Heparan sulfate ; Human health and pathology ; Infections ; Life Sciences ; Organoids ; Peptides ; Photoreceptors ; Pluripotency ; Receptor mechanisms ; Retina ; Retinal degeneration ; Sensory Organs ; Stem cells ; Transduction</subject><ispartof>International journal of molecular sciences, 2020-02, Vol.21 (3), p.994</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f056e68d745504db2bf9beb92967dd4e1d7b45cefa3c5a2765b3794115017c593</citedby><cites>FETCH-LOGICAL-c489t-f056e68d745504db2bf9beb92967dd4e1d7b45cefa3c5a2765b3794115017c593</cites><orcidid>0000-0002-4311-138X ; 0000-0002-7973-8301 ; 0000-0003-1776-6339 ; 0000-0003-0972-2117 ; 0000-0003-4112-9321 ; 0000-0002-4831-1153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036814/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036814/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32028585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02538406$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garita-Hernandez, Marcela</creatorcontrib><creatorcontrib>Routet, Fiona</creatorcontrib><creatorcontrib>Guibbal, Laure</creatorcontrib><creatorcontrib>Khabou, Hanen</creatorcontrib><creatorcontrib>Toualbi, Lyes</creatorcontrib><creatorcontrib>Riancho, Luisa</creatorcontrib><creatorcontrib>Reichman, Sacha</creatorcontrib><creatorcontrib>Duebel, Jens</creatorcontrib><creatorcontrib>Sahel, Jose-Alain</creatorcontrib><creatorcontrib>Goureau, Olivier</creatorcontrib><creatorcontrib>Dalkara, Deniz</creatorcontrib><title>AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs. Thus far, little work has been carried out to investigate mechanisms of AAV-mediated gene delivery and the potential advantages of engineered AAVs to genetically modify retinal organoids. In this study, we compared the early transduction efficiency of several recombinant and engineered AAVs in hiPSC-derived RPE cells and retinal organoids in relation to the availability of their cell-surface receptors and as a function of time. The genetic variant AAV2-7m8 had a superior transduction efficiency when applied at day 44 of differentiation on retinal organoids and provided long-lasting expressions for at least 4 weeks after infection without compromising cell viability. All of the capsids we tested transduced the hiPSC-RPE cells, with the AAV2-7m8 variant being the most efficient. Transduction efficiency was correlated with the presence of primary cell-surface receptors on the hiPS-derived organoids. Our study explores some of the mechanisms of cell attachment of AAVs and reports long-term gene expression resulting from gene delivery in retinal organoids.</description><subject>Biotechnology</subject><subject>Capsids</subject><subject>Cell adhesion</subject><subject>Cell cycle</subject><subject>Cell surface</subject><subject>Cell viability</subject><subject>Degenerative diseases</subject><subject>Efficiency</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genetic diversity</subject><subject>Genetic modification</subject><subject>Heparan sulfate</subject><subject>Human health and pathology</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Organoids</subject><subject>Peptides</subject><subject>Photoreceptors</subject><subject>Pluripotency</subject><subject>Receptor mechanisms</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Sensory Organs</subject><subject>Stem cells</subject><subject>Transduction</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctr3DAQxkVISdK0t5yDIJcW6kZvW5fAsmmzgQ0pfV2FbI0TLba1leyF_PfVsmnY5qRh5qdvHh9CZ5R85lyTS7_qE6OEE63FATqhgrGCEFUe7sXH6G1KK0IYZ1IfoWPOCKtkJU-Qm81-F3fgvB3B4RsYAF9D5zcQn_AYML_G32H0g-3wfXywQ_AuZSBmwOE2hh4vpt4O-HZwU5NT37op-nUYYRjxjxF6PIeuS-_Qm9Z2Cd4_v6fo19cvP-eLYnl_czufLYtGVHosWiIVqMqVQkoiXM3qVtdQa6ZV6ZwA6spayAZayxtpWalkzUstKJWElo3U_BRd7XTXU92Da_IU0XZmHX1v45MJ1pv_K4N_NA9hY0rCVUVFFvi4E3h89W0xW5ptjjDJK0HUhmb2w3OzGP5MkEbT-9Tkde0AYUqGcckUF1SqjF68QldhivmomZKiyhRh2-afdlQTQ0oR2pcJKDFbq82-1Rk_31_2Bf7nLf8LCJGjQQ</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Garita-Hernandez, Marcela</creator><creator>Routet, Fiona</creator><creator>Guibbal, Laure</creator><creator>Khabou, Hanen</creator><creator>Toualbi, Lyes</creator><creator>Riancho, Luisa</creator><creator>Reichman, Sacha</creator><creator>Duebel, Jens</creator><creator>Sahel, Jose-Alain</creator><creator>Goureau, Olivier</creator><creator>Dalkara, Deniz</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4311-138X</orcidid><orcidid>https://orcid.org/0000-0002-7973-8301</orcidid><orcidid>https://orcid.org/0000-0003-1776-6339</orcidid><orcidid>https://orcid.org/0000-0003-0972-2117</orcidid><orcidid>https://orcid.org/0000-0003-4112-9321</orcidid><orcidid>https://orcid.org/0000-0002-4831-1153</orcidid></search><sort><creationdate>20200203</creationdate><title>AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells</title><author>Garita-Hernandez, Marcela ; Routet, Fiona ; Guibbal, Laure ; Khabou, Hanen ; Toualbi, Lyes ; Riancho, Luisa ; Reichman, Sacha ; Duebel, Jens ; Sahel, Jose-Alain ; Goureau, Olivier ; Dalkara, Deniz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f056e68d745504db2bf9beb92967dd4e1d7b45cefa3c5a2765b3794115017c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biotechnology</topic><topic>Capsids</topic><topic>Cell adhesion</topic><topic>Cell cycle</topic><topic>Cell surface</topic><topic>Cell viability</topic><topic>Degenerative diseases</topic><topic>Efficiency</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genetic diversity</topic><topic>Genetic modification</topic><topic>Heparan sulfate</topic><topic>Human health and pathology</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Organoids</topic><topic>Peptides</topic><topic>Photoreceptors</topic><topic>Pluripotency</topic><topic>Receptor mechanisms</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Sensory Organs</topic><topic>Stem cells</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garita-Hernandez, Marcela</creatorcontrib><creatorcontrib>Routet, Fiona</creatorcontrib><creatorcontrib>Guibbal, Laure</creatorcontrib><creatorcontrib>Khabou, Hanen</creatorcontrib><creatorcontrib>Toualbi, Lyes</creatorcontrib><creatorcontrib>Riancho, Luisa</creatorcontrib><creatorcontrib>Reichman, Sacha</creatorcontrib><creatorcontrib>Duebel, Jens</creatorcontrib><creatorcontrib>Sahel, Jose-Alain</creatorcontrib><creatorcontrib>Goureau, Olivier</creatorcontrib><creatorcontrib>Dalkara, Deniz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garita-Hernandez, Marcela</au><au>Routet, Fiona</au><au>Guibbal, Laure</au><au>Khabou, Hanen</au><au>Toualbi, Lyes</au><au>Riancho, Luisa</au><au>Reichman, Sacha</au><au>Duebel, Jens</au><au>Sahel, Jose-Alain</au><au>Goureau, Olivier</au><au>Dalkara, Deniz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>21</volume><issue>3</issue><spage>994</spage><pages>994-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs. Thus far, little work has been carried out to investigate mechanisms of AAV-mediated gene delivery and the potential advantages of engineered AAVs to genetically modify retinal organoids. In this study, we compared the early transduction efficiency of several recombinant and engineered AAVs in hiPSC-derived RPE cells and retinal organoids in relation to the availability of their cell-surface receptors and as a function of time. The genetic variant AAV2-7m8 had a superior transduction efficiency when applied at day 44 of differentiation on retinal organoids and provided long-lasting expressions for at least 4 weeks after infection without compromising cell viability. All of the capsids we tested transduced the hiPSC-RPE cells, with the AAV2-7m8 variant being the most efficient. Transduction efficiency was correlated with the presence of primary cell-surface receptors on the hiPS-derived organoids. Our study explores some of the mechanisms of cell attachment of AAVs and reports long-term gene expression resulting from gene delivery in retinal organoids.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32028585</pmid><doi>10.3390/ijms21030994</doi><orcidid>https://orcid.org/0000-0002-4311-138X</orcidid><orcidid>https://orcid.org/0000-0002-7973-8301</orcidid><orcidid>https://orcid.org/0000-0003-1776-6339</orcidid><orcidid>https://orcid.org/0000-0003-0972-2117</orcidid><orcidid>https://orcid.org/0000-0003-4112-9321</orcidid><orcidid>https://orcid.org/0000-0002-4831-1153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-02, Vol.21 (3), p.994
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7036814
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biotechnology
Capsids
Cell adhesion
Cell cycle
Cell surface
Cell viability
Degenerative diseases
Efficiency
Gene expression
Gene therapy
Gene transfer
Genetic diversity
Genetic modification
Heparan sulfate
Human health and pathology
Infections
Life Sciences
Organoids
Peptides
Photoreceptors
Pluripotency
Receptor mechanisms
Retina
Retinal degeneration
Sensory Organs
Stem cells
Transduction
title AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AAV-Mediated%20Gene%20Delivery%20to%203D%20Retinal%20Organoids%20Derived%20from%20Human%20Induced%20Pluripotent%20Stem%20Cells&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Garita-Hernandez,%20Marcela&rft.date=2020-02-03&rft.volume=21&rft.issue=3&rft.spage=994&rft.pages=994-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21030994&rft_dat=%3Cproquest_pubme%3E2548634024%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548634024&rft_id=info:pmid/32028585&rfr_iscdi=true