Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays

Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2019-11, Vol.2 (11), p.7214-7219
Hauptverfasser: Ahumada-Lazo, Ruben, Fairclough, Simon M, Hardman, Samantha J. O, Taylor, Peter N, Green, Mark, Haigh, Sarah J, Saran, Rinku, Curry, Richard J, Binks, David J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7219
container_issue 11
container_start_page 7214
container_title ACS applied nano materials
container_volume 2
creator Ahumada-Lazo, Ruben
Fairclough, Simon M
Hardman, Samantha J. O
Taylor, Peter N
Green, Mark
Haigh, Sarah J
Saran, Rinku
Curry, Richard J
Binks, David J
description Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.
doi_str_mv 10.1021/acsanm.9b01714
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7036766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369880309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-e8e7666861e0f47f6c86fd1cff43a394bd876ca399597a3a2c784544afe4aa373</originalsourceid><addsrcrecordid>eNpVkUFr3DAUhEVpaUKaa886loCTJ0sryT0Eir1pAktCIL30It7KUqIgS1vLDuy_r8vuoTm9gTfMMHyEfGVwyaBmV2gLpuGy2QJTTHwgp_VKiQoaBR__0yfkvJRXAGANkxzgMznhNWO6Bjgloc3Jh-QGlya69t7ZqVBMPW1fcHx2tNsnHIItNCT6O_H7mrY5xhx6jPRxxjTNA-3yVL7Tu2EXg8Up5FSozyN97KrNuqNdKLuI-_KFfPIYizs_3jPy62b91N5Wm4efd-2PTYWc6aly2ikppZbMgRfKS6ul75n1XnDkjdj2Wkm7qGbVKORYW6XFSgj0TiByxc_I9SF3N28H19tl2IjR7MYw4Lg3GYN5_0nhxTznN6OAy6V6Cfh2DBjzn9mVyQyhWBcjJpfnYmouG62BQ7NYLw7WhYR5zfOYlmWGgfmHxxzwmCMe_hfX6YLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369880309</pqid></control><display><type>article</type><title>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</title><source>ACS Publications</source><creator>Ahumada-Lazo, Ruben ; Fairclough, Simon M ; Hardman, Samantha J. O ; Taylor, Peter N ; Green, Mark ; Haigh, Sarah J ; Saran, Rinku ; Curry, Richard J ; Binks, David J</creator><creatorcontrib>Ahumada-Lazo, Ruben ; Fairclough, Simon M ; Hardman, Samantha J. O ; Taylor, Peter N ; Green, Mark ; Haigh, Sarah J ; Saran, Rinku ; Curry, Richard J ; Binks, David J</creatorcontrib><description>Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.9b01714</identifier><identifier>PMID: 32118200</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2019-11, Vol.2 (11), p.7214-7219</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7507-1274 ; 0000-0001-5509-6706 ; 0000-0001-8859-5210 ; 0000-0002-1524-9576 ; 0000-0002-9102-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.9b01714$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.9b01714$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Ahumada-Lazo, Ruben</creatorcontrib><creatorcontrib>Fairclough, Simon M</creatorcontrib><creatorcontrib>Hardman, Samantha J. O</creatorcontrib><creatorcontrib>Taylor, Peter N</creatorcontrib><creatorcontrib>Green, Mark</creatorcontrib><creatorcontrib>Haigh, Sarah J</creatorcontrib><creatorcontrib>Saran, Rinku</creatorcontrib><creatorcontrib>Curry, Richard J</creatorcontrib><creatorcontrib>Binks, David J</creatorcontrib><title>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkUFr3DAUhEVpaUKaa886loCTJ0sryT0Eir1pAktCIL30It7KUqIgS1vLDuy_r8vuoTm9gTfMMHyEfGVwyaBmV2gLpuGy2QJTTHwgp_VKiQoaBR__0yfkvJRXAGANkxzgMznhNWO6Bjgloc3Jh-QGlya69t7ZqVBMPW1fcHx2tNsnHIItNCT6O_H7mrY5xhx6jPRxxjTNA-3yVL7Tu2EXg8Up5FSozyN97KrNuqNdKLuI-_KFfPIYizs_3jPy62b91N5Wm4efd-2PTYWc6aly2ikppZbMgRfKS6ul75n1XnDkjdj2Wkm7qGbVKORYW6XFSgj0TiByxc_I9SF3N28H19tl2IjR7MYw4Lg3GYN5_0nhxTznN6OAy6V6Cfh2DBjzn9mVyQyhWBcjJpfnYmouG62BQ7NYLw7WhYR5zfOYlmWGgfmHxxzwmCMe_hfX6YLR</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>Ahumada-Lazo, Ruben</creator><creator>Fairclough, Simon M</creator><creator>Hardman, Samantha J. O</creator><creator>Taylor, Peter N</creator><creator>Green, Mark</creator><creator>Haigh, Sarah J</creator><creator>Saran, Rinku</creator><creator>Curry, Richard J</creator><creator>Binks, David J</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7507-1274</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid><orcidid>https://orcid.org/0000-0001-8859-5210</orcidid><orcidid>https://orcid.org/0000-0002-1524-9576</orcidid><orcidid>https://orcid.org/0000-0002-9102-0941</orcidid></search><sort><creationdate>20191122</creationdate><title>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</title><author>Ahumada-Lazo, Ruben ; Fairclough, Simon M ; Hardman, Samantha J. O ; Taylor, Peter N ; Green, Mark ; Haigh, Sarah J ; Saran, Rinku ; Curry, Richard J ; Binks, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-e8e7666861e0f47f6c86fd1cff43a394bd876ca399597a3a2c784544afe4aa373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahumada-Lazo, Ruben</creatorcontrib><creatorcontrib>Fairclough, Simon M</creatorcontrib><creatorcontrib>Hardman, Samantha J. O</creatorcontrib><creatorcontrib>Taylor, Peter N</creatorcontrib><creatorcontrib>Green, Mark</creatorcontrib><creatorcontrib>Haigh, Sarah J</creatorcontrib><creatorcontrib>Saran, Rinku</creatorcontrib><creatorcontrib>Curry, Richard J</creatorcontrib><creatorcontrib>Binks, David J</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahumada-Lazo, Ruben</au><au>Fairclough, Simon M</au><au>Hardman, Samantha J. O</au><au>Taylor, Peter N</au><au>Green, Mark</au><au>Haigh, Sarah J</au><au>Saran, Rinku</au><au>Curry, Richard J</au><au>Binks, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2019-11-22</date><risdate>2019</risdate><volume>2</volume><issue>11</issue><spage>7214</spage><epage>7219</epage><pages>7214-7219</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.</abstract><pub>American Chemical Society</pub><pmid>32118200</pmid><doi>10.1021/acsanm.9b01714</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7507-1274</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid><orcidid>https://orcid.org/0000-0001-8859-5210</orcidid><orcidid>https://orcid.org/0000-0002-1524-9576</orcidid><orcidid>https://orcid.org/0000-0002-9102-0941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2019-11, Vol.2 (11), p.7214-7219
issn 2574-0970
2574-0970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7036766
source ACS Publications
title Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement%20Effects%20and%20Charge%20Dynamics%20in%20Zn3N2%20Colloidal%20Quantum%20Dots:%20Implications%20for%20QD-LED%20Displays&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Ahumada-Lazo,%20Ruben&rft.date=2019-11-22&rft.volume=2&rft.issue=11&rft.spage=7214&rft.epage=7219&rft.pages=7214-7219&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.9b01714&rft_dat=%3Cproquest_pubme%3E2369880309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369880309&rft_id=info:pmid/32118200&rfr_iscdi=true