Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays
Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transien...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2019-11, Vol.2 (11), p.7214-7219 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7219 |
---|---|
container_issue | 11 |
container_start_page | 7214 |
container_title | ACS applied nano materials |
container_volume | 2 |
creator | Ahumada-Lazo, Ruben Fairclough, Simon M Hardman, Samantha J. O Taylor, Peter N Green, Mark Haigh, Sarah J Saran, Rinku Curry, Richard J Binks, David J |
description | Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays. |
doi_str_mv | 10.1021/acsanm.9b01714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7036766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369880309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-e8e7666861e0f47f6c86fd1cff43a394bd876ca399597a3a2c784544afe4aa373</originalsourceid><addsrcrecordid>eNpVkUFr3DAUhEVpaUKaa886loCTJ0sryT0Eir1pAktCIL30It7KUqIgS1vLDuy_r8vuoTm9gTfMMHyEfGVwyaBmV2gLpuGy2QJTTHwgp_VKiQoaBR__0yfkvJRXAGANkxzgMznhNWO6Bjgloc3Jh-QGlya69t7ZqVBMPW1fcHx2tNsnHIItNCT6O_H7mrY5xhx6jPRxxjTNA-3yVL7Tu2EXg8Up5FSozyN97KrNuqNdKLuI-_KFfPIYizs_3jPy62b91N5Wm4efd-2PTYWc6aly2ikppZbMgRfKS6ul75n1XnDkjdj2Wkm7qGbVKORYW6XFSgj0TiByxc_I9SF3N28H19tl2IjR7MYw4Lg3GYN5_0nhxTznN6OAy6V6Cfh2DBjzn9mVyQyhWBcjJpfnYmouG62BQ7NYLw7WhYR5zfOYlmWGgfmHxxzwmCMe_hfX6YLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369880309</pqid></control><display><type>article</type><title>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</title><source>ACS Publications</source><creator>Ahumada-Lazo, Ruben ; Fairclough, Simon M ; Hardman, Samantha J. O ; Taylor, Peter N ; Green, Mark ; Haigh, Sarah J ; Saran, Rinku ; Curry, Richard J ; Binks, David J</creator><creatorcontrib>Ahumada-Lazo, Ruben ; Fairclough, Simon M ; Hardman, Samantha J. O ; Taylor, Peter N ; Green, Mark ; Haigh, Sarah J ; Saran, Rinku ; Curry, Richard J ; Binks, David J</creatorcontrib><description>Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.9b01714</identifier><identifier>PMID: 32118200</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2019-11, Vol.2 (11), p.7214-7219</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7507-1274 ; 0000-0001-5509-6706 ; 0000-0001-8859-5210 ; 0000-0002-1524-9576 ; 0000-0002-9102-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.9b01714$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.9b01714$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Ahumada-Lazo, Ruben</creatorcontrib><creatorcontrib>Fairclough, Simon M</creatorcontrib><creatorcontrib>Hardman, Samantha J. O</creatorcontrib><creatorcontrib>Taylor, Peter N</creatorcontrib><creatorcontrib>Green, Mark</creatorcontrib><creatorcontrib>Haigh, Sarah J</creatorcontrib><creatorcontrib>Saran, Rinku</creatorcontrib><creatorcontrib>Curry, Richard J</creatorcontrib><creatorcontrib>Binks, David J</creatorcontrib><title>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkUFr3DAUhEVpaUKaa886loCTJ0sryT0Eir1pAktCIL30It7KUqIgS1vLDuy_r8vuoTm9gTfMMHyEfGVwyaBmV2gLpuGy2QJTTHwgp_VKiQoaBR__0yfkvJRXAGANkxzgMznhNWO6Bjgloc3Jh-QGlya69t7ZqVBMPW1fcHx2tNsnHIItNCT6O_H7mrY5xhx6jPRxxjTNA-3yVL7Tu2EXg8Up5FSozyN97KrNuqNdKLuI-_KFfPIYizs_3jPy62b91N5Wm4efd-2PTYWc6aly2ikppZbMgRfKS6ul75n1XnDkjdj2Wkm7qGbVKORYW6XFSgj0TiByxc_I9SF3N28H19tl2IjR7MYw4Lg3GYN5_0nhxTznN6OAy6V6Cfh2DBjzn9mVyQyhWBcjJpfnYmouG62BQ7NYLw7WhYR5zfOYlmWGgfmHxxzwmCMe_hfX6YLR</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>Ahumada-Lazo, Ruben</creator><creator>Fairclough, Simon M</creator><creator>Hardman, Samantha J. O</creator><creator>Taylor, Peter N</creator><creator>Green, Mark</creator><creator>Haigh, Sarah J</creator><creator>Saran, Rinku</creator><creator>Curry, Richard J</creator><creator>Binks, David J</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7507-1274</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid><orcidid>https://orcid.org/0000-0001-8859-5210</orcidid><orcidid>https://orcid.org/0000-0002-1524-9576</orcidid><orcidid>https://orcid.org/0000-0002-9102-0941</orcidid></search><sort><creationdate>20191122</creationdate><title>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</title><author>Ahumada-Lazo, Ruben ; Fairclough, Simon M ; Hardman, Samantha J. O ; Taylor, Peter N ; Green, Mark ; Haigh, Sarah J ; Saran, Rinku ; Curry, Richard J ; Binks, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-e8e7666861e0f47f6c86fd1cff43a394bd876ca399597a3a2c784544afe4aa373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahumada-Lazo, Ruben</creatorcontrib><creatorcontrib>Fairclough, Simon M</creatorcontrib><creatorcontrib>Hardman, Samantha J. O</creatorcontrib><creatorcontrib>Taylor, Peter N</creatorcontrib><creatorcontrib>Green, Mark</creatorcontrib><creatorcontrib>Haigh, Sarah J</creatorcontrib><creatorcontrib>Saran, Rinku</creatorcontrib><creatorcontrib>Curry, Richard J</creatorcontrib><creatorcontrib>Binks, David J</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahumada-Lazo, Ruben</au><au>Fairclough, Simon M</au><au>Hardman, Samantha J. O</au><au>Taylor, Peter N</au><au>Green, Mark</au><au>Haigh, Sarah J</au><au>Saran, Rinku</au><au>Curry, Richard J</au><au>Binks, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2019-11-22</date><risdate>2019</risdate><volume>2</volume><issue>11</issue><spage>7214</spage><epage>7219</epage><pages>7214-7219</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Zinc nitride (Zn3N2) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10–15 to 2.04 ± 0.03 × 10–15 cm2), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn3N2 colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.</abstract><pub>American Chemical Society</pub><pmid>32118200</pmid><doi>10.1021/acsanm.9b01714</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7507-1274</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid><orcidid>https://orcid.org/0000-0001-8859-5210</orcidid><orcidid>https://orcid.org/0000-0002-1524-9576</orcidid><orcidid>https://orcid.org/0000-0002-9102-0941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2019-11, Vol.2 (11), p.7214-7219 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7036766 |
source | ACS Publications |
title | Confinement Effects and Charge Dynamics in Zn3N2 Colloidal Quantum Dots: Implications for QD-LED Displays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement%20Effects%20and%20Charge%20Dynamics%20in%20Zn3N2%20Colloidal%20Quantum%20Dots:%20Implications%20for%20QD-LED%20Displays&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Ahumada-Lazo,%20Ruben&rft.date=2019-11-22&rft.volume=2&rft.issue=11&rft.spage=7214&rft.epage=7219&rft.pages=7214-7219&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.9b01714&rft_dat=%3Cproquest_pubme%3E2369880309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369880309&rft_id=info:pmid/32118200&rfr_iscdi=true |