Novel Fluorescent Mitochondria-Targeted Probe MitoCLox Reports Lipid Peroxidation in Response to Oxidative Stress In Vivo
A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditi...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2020, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Oxidative medicine and cellular longevity |
container_volume | 2020 |
creator | Chernyak, Boris V. Mulkidjanian, Armen Y. Rieger, Bettina Pletjushkina, Olga Yu Popova, Ekaterina N. Galkin, Ivan I. Karpukhina, Anna A. Panteleeva, Alisa A. Lyamzaev, Konstantin Busch, Karin B. |
description | A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation. |
doi_str_mv | 10.1155/2020/3631272 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622369029</galeid><sourcerecordid>A622369029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-5a8d1c7a42cda95240f335016a8b9ed4c8d8d0130e4c4b143a52e85c83e32d993</originalsourceid><addsrcrecordid>eNqNkU1vEzEYhC0EoiVw44wscUGCpf7crC9IVUShUqAIClfLsd8krjb2Yu-m7b-vl4QUOHGypXk04_Eg9JySt5RKecIIIye85pRN2QN0TJVgFVFKPDzcCTlCT3K-IqTmTNDH6IgzSoTk9Bjdfo5baPFZO8QE2ULo8SffR7uOwSVvqkuTVtCDw19SXMAvbTaPN_grdDH1Gc9954sIKd54Z3ofA_ahqLmLIQPuI77YCVvA3_oSkfF5wD_8Nj5Fj5amzfBsf07Q97P3l7OP1fziw_nsdF5ZoVRfSdM4aqdGMOuMkkyQJeeS0No0CwVO2MY1jlBOQFixoIIbyaCRtuHAmVOKT9C7nW83LDbgxorJtLpLfmPSrY7G67-V4Nd6Fbd6SriUcloMXu0NUvw5QO71xpefalsTIA5ZM17XNed1yZ6gl_-gV3FIodQbKdoI3lB1T61MC9qHZSy5djTVpzUroCJspN7sKJtizgmWhydTosfl9bi83i9f8Bd_1jzAv6cuwOsdsPbBmWv_n3ZQGFiae5oRwankdwW1v54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2361843819</pqid></control><display><type>article</type><title>Novel Fluorescent Mitochondria-Targeted Probe MitoCLox Reports Lipid Peroxidation in Response to Oxidative Stress In Vivo</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Chernyak, Boris V. ; Mulkidjanian, Armen Y. ; Rieger, Bettina ; Pletjushkina, Olga Yu ; Popova, Ekaterina N. ; Galkin, Ivan I. ; Karpukhina, Anna A. ; Panteleeva, Alisa A. ; Lyamzaev, Konstantin ; Busch, Karin B.</creator><contributor>Isaguliants, Maria ; Maria Isaguliants</contributor><creatorcontrib>Chernyak, Boris V. ; Mulkidjanian, Armen Y. ; Rieger, Bettina ; Pletjushkina, Olga Yu ; Popova, Ekaterina N. ; Galkin, Ivan I. ; Karpukhina, Anna A. ; Panteleeva, Alisa A. ; Lyamzaev, Konstantin ; Busch, Karin B. ; Isaguliants, Maria ; Maria Isaguliants</creatorcontrib><description>A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2020/3631272</identifier><identifier>PMID: 32104531</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Cardiolipin ; Cell culture ; Cytochrome ; Data analysis ; Enzymes ; Fatty acids ; Fibroblasts ; Flow cytometry ; Fluorescence microscopy ; Investigations ; Lasers ; Lipid peroxidation ; Lipids ; Membrane lipids ; Microscopy ; Mitochondria ; Oxidation ; Oxidative stress ; Peptides ; Peroxides ; Software ; Variance analysis</subject><ispartof>Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Konstantin G. Lyamzaev et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Konstantin G. Lyamzaev et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Konstantin G. Lyamzaev et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-5a8d1c7a42cda95240f335016a8b9ed4c8d8d0130e4c4b143a52e85c83e32d993</citedby><cites>FETCH-LOGICAL-c499t-5a8d1c7a42cda95240f335016a8b9ed4c8d8d0130e4c4b143a52e85c83e32d993</cites><orcidid>0000-0003-1523-0864 ; 0000-0002-9025-3794 ; 0000-0002-7521-7736 ; 0000-0002-2726-4749 ; 0000-0003-0525-0191 ; 0000-0001-9921-8031 ; 0000-0001-5844-3064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035557/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035557/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32104531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Isaguliants, Maria</contributor><contributor>Maria Isaguliants</contributor><creatorcontrib>Chernyak, Boris V.</creatorcontrib><creatorcontrib>Mulkidjanian, Armen Y.</creatorcontrib><creatorcontrib>Rieger, Bettina</creatorcontrib><creatorcontrib>Pletjushkina, Olga Yu</creatorcontrib><creatorcontrib>Popova, Ekaterina N.</creatorcontrib><creatorcontrib>Galkin, Ivan I.</creatorcontrib><creatorcontrib>Karpukhina, Anna A.</creatorcontrib><creatorcontrib>Panteleeva, Alisa A.</creatorcontrib><creatorcontrib>Lyamzaev, Konstantin</creatorcontrib><creatorcontrib>Busch, Karin B.</creatorcontrib><title>Novel Fluorescent Mitochondria-Targeted Probe MitoCLox Reports Lipid Peroxidation in Response to Oxidative Stress In Vivo</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.</description><subject>Cardiolipin</subject><subject>Cell culture</subject><subject>Cytochrome</subject><subject>Data analysis</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Fluorescence microscopy</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Membrane lipids</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Peptides</subject><subject>Peroxides</subject><subject>Software</subject><subject>Variance analysis</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1vEzEYhC0EoiVw44wscUGCpf7crC9IVUShUqAIClfLsd8krjb2Yu-m7b-vl4QUOHGypXk04_Eg9JySt5RKecIIIye85pRN2QN0TJVgFVFKPDzcCTlCT3K-IqTmTNDH6IgzSoTk9Bjdfo5baPFZO8QE2ULo8SffR7uOwSVvqkuTVtCDw19SXMAvbTaPN_grdDH1Gc9954sIKd54Z3ofA_ahqLmLIQPuI77YCVvA3_oSkfF5wD_8Nj5Fj5amzfBsf07Q97P3l7OP1fziw_nsdF5ZoVRfSdM4aqdGMOuMkkyQJeeS0No0CwVO2MY1jlBOQFixoIIbyaCRtuHAmVOKT9C7nW83LDbgxorJtLpLfmPSrY7G67-V4Nd6Fbd6SriUcloMXu0NUvw5QO71xpefalsTIA5ZM17XNed1yZ6gl_-gV3FIodQbKdoI3lB1T61MC9qHZSy5djTVpzUroCJspN7sKJtizgmWhydTosfl9bi83i9f8Bd_1jzAv6cuwOsdsPbBmWv_n3ZQGFiae5oRwankdwW1v54</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chernyak, Boris V.</creator><creator>Mulkidjanian, Armen Y.</creator><creator>Rieger, Bettina</creator><creator>Pletjushkina, Olga Yu</creator><creator>Popova, Ekaterina N.</creator><creator>Galkin, Ivan I.</creator><creator>Karpukhina, Anna A.</creator><creator>Panteleeva, Alisa A.</creator><creator>Lyamzaev, Konstantin</creator><creator>Busch, Karin B.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1523-0864</orcidid><orcidid>https://orcid.org/0000-0002-9025-3794</orcidid><orcidid>https://orcid.org/0000-0002-7521-7736</orcidid><orcidid>https://orcid.org/0000-0002-2726-4749</orcidid><orcidid>https://orcid.org/0000-0003-0525-0191</orcidid><orcidid>https://orcid.org/0000-0001-9921-8031</orcidid><orcidid>https://orcid.org/0000-0001-5844-3064</orcidid></search><sort><creationdate>2020</creationdate><title>Novel Fluorescent Mitochondria-Targeted Probe MitoCLox Reports Lipid Peroxidation in Response to Oxidative Stress In Vivo</title><author>Chernyak, Boris V. ; Mulkidjanian, Armen Y. ; Rieger, Bettina ; Pletjushkina, Olga Yu ; Popova, Ekaterina N. ; Galkin, Ivan I. ; Karpukhina, Anna A. ; Panteleeva, Alisa A. ; Lyamzaev, Konstantin ; Busch, Karin B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-5a8d1c7a42cda95240f335016a8b9ed4c8d8d0130e4c4b143a52e85c83e32d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cardiolipin</topic><topic>Cell culture</topic><topic>Cytochrome</topic><topic>Data analysis</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Fluorescence microscopy</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Membrane lipids</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Peptides</topic><topic>Peroxides</topic><topic>Software</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernyak, Boris V.</creatorcontrib><creatorcontrib>Mulkidjanian, Armen Y.</creatorcontrib><creatorcontrib>Rieger, Bettina</creatorcontrib><creatorcontrib>Pletjushkina, Olga Yu</creatorcontrib><creatorcontrib>Popova, Ekaterina N.</creatorcontrib><creatorcontrib>Galkin, Ivan I.</creatorcontrib><creatorcontrib>Karpukhina, Anna A.</creatorcontrib><creatorcontrib>Panteleeva, Alisa A.</creatorcontrib><creatorcontrib>Lyamzaev, Konstantin</creatorcontrib><creatorcontrib>Busch, Karin B.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernyak, Boris V.</au><au>Mulkidjanian, Armen Y.</au><au>Rieger, Bettina</au><au>Pletjushkina, Olga Yu</au><au>Popova, Ekaterina N.</au><au>Galkin, Ivan I.</au><au>Karpukhina, Anna A.</au><au>Panteleeva, Alisa A.</au><au>Lyamzaev, Konstantin</au><au>Busch, Karin B.</au><au>Isaguliants, Maria</au><au>Maria Isaguliants</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Fluorescent Mitochondria-Targeted Probe MitoCLox Reports Lipid Peroxidation in Response to Oxidative Stress In Vivo</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32104531</pmid><doi>10.1155/2020/3631272</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1523-0864</orcidid><orcidid>https://orcid.org/0000-0002-9025-3794</orcidid><orcidid>https://orcid.org/0000-0002-7521-7736</orcidid><orcidid>https://orcid.org/0000-0002-2726-4749</orcidid><orcidid>https://orcid.org/0000-0003-0525-0191</orcidid><orcidid>https://orcid.org/0000-0001-9921-8031</orcidid><orcidid>https://orcid.org/0000-0001-5844-3064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-0900 |
ispartof | Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-11 |
issn | 1942-0900 1942-0994 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035557 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Cardiolipin Cell culture Cytochrome Data analysis Enzymes Fatty acids Fibroblasts Flow cytometry Fluorescence microscopy Investigations Lasers Lipid peroxidation Lipids Membrane lipids Microscopy Mitochondria Oxidation Oxidative stress Peptides Peroxides Software Variance analysis |
title | Novel Fluorescent Mitochondria-Targeted Probe MitoCLox Reports Lipid Peroxidation in Response to Oxidative Stress In Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Fluorescent%20Mitochondria-Targeted%20Probe%20MitoCLox%20Reports%20Lipid%20Peroxidation%20in%20Response%20to%20Oxidative%20Stress%20In%20Vivo&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Chernyak,%20Boris%20V.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2020/3631272&rft_dat=%3Cgale_pubme%3EA622369029%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2361843819&rft_id=info:pmid/32104531&rft_galeid=A622369029&rfr_iscdi=true |