Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors
Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type recepto...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (7), p.3828-3838 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3838 |
---|---|
container_issue | 7 |
container_start_page | 3828 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Hu, Ning Rutherford, Mark A. Green, Steven H. |
description | Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs. |
doi_str_mv | 10.1073/pnas.1914247117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929021</jstor_id><sourcerecordid>26929021</sourcerecordid><originalsourceid>FETCH-LOGICAL-j289t-7f17bd49f7d4c0ef21c4a545d1068810511aa45a185a1f88aef190a49dd29e3</originalsourceid><addsrcrecordid>eNpVkM1r3TAQxEVpaV7TnnsqCHosTnZl2ZIuhcejX5DSQHI3a2nd-NW2XMkOef99XRIKPQx7mOHHzArxFuECwZSX80T5Ah1qpQ2ieSZ2CA6LWjt4LnYAyhR2887Eq5yPAOAqCy_FWakAK1R2J9J1igv7pY-TjJ300d8NTEnm00Rz5iy7FEc5xT5z0U9h9RwkP_h-iUt86L1cEq0jyfYk2yH6XxT4L-ZA6kMxcxqZ2oHl_vv1Xib2PC8x5dfiRUdD5jdP91zcfP50e_haXP348u2wvyqOyrqlMB2aNmjXmaA9cKfQa6p0FRBqaxEqRCJdEdpNnbXEHTog7UJQjstz8fGROq_tyMHztFUdmjn1I6VTE6lv_nem_q75Ge8bA2WlndsA758AKf5eOS_NMa5p2ho3qqy319bKmi317jF1zNu2f3hVO-VAYfkHL0t_3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360026287</pqid></control><display><type>article</type><title>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hu, Ning ; Rutherford, Mark A. ; Green, Steven H.</creator><creatorcontrib>Hu, Ning ; Rutherford, Mark A. ; Green, Steven H.</creatorcontrib><description>Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1914247117</identifier><identifier>PMID: 32015128</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Amplitudes ; Biological Sciences ; Brain stem ; Calcium ions ; Calcium permeability ; Cochlea ; Excitotoxicity ; Exposure ; Glutamatergic transmission ; Hair cells ; Heterogeneity ; Neurotransmission ; Noise ; Noise levels ; Perfusion ; Permeability ; Propionic acid ; Receptors ; Relative abundance ; Sound pressure ; Spiral ganglion ; Synapses ; Synaptic transmission ; Trauma ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3828-3838</ispartof><rights>Copyright National Academy of Sciences Feb 18, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Rutherford, Mark A.</creatorcontrib><creatorcontrib>Green, Steven H.</creatorcontrib><title>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.</description><subject>Amplitudes</subject><subject>Biological Sciences</subject><subject>Brain stem</subject><subject>Calcium ions</subject><subject>Calcium permeability</subject><subject>Cochlea</subject><subject>Excitotoxicity</subject><subject>Exposure</subject><subject>Glutamatergic transmission</subject><subject>Hair cells</subject><subject>Heterogeneity</subject><subject>Neurotransmission</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Perfusion</subject><subject>Permeability</subject><subject>Propionic acid</subject><subject>Receptors</subject><subject>Relative abundance</subject><subject>Sound pressure</subject><subject>Spiral ganglion</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><subject>Trauma</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1r3TAQxEVpaV7TnnsqCHosTnZl2ZIuhcejX5DSQHI3a2nd-NW2XMkOef99XRIKPQx7mOHHzArxFuECwZSX80T5Ah1qpQ2ieSZ2CA6LWjt4LnYAyhR2887Eq5yPAOAqCy_FWakAK1R2J9J1igv7pY-TjJ300d8NTEnm00Rz5iy7FEc5xT5z0U9h9RwkP_h-iUt86L1cEq0jyfYk2yH6XxT4L-ZA6kMxcxqZ2oHl_vv1Xib2PC8x5dfiRUdD5jdP91zcfP50e_haXP348u2wvyqOyrqlMB2aNmjXmaA9cKfQa6p0FRBqaxEqRCJdEdpNnbXEHTog7UJQjstz8fGROq_tyMHztFUdmjn1I6VTE6lv_nem_q75Ge8bA2WlndsA758AKf5eOS_NMa5p2ho3qqy319bKmi317jF1zNu2f3hVO-VAYfkHL0t_3A</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Hu, Ning</creator><creator>Rutherford, Mark A.</creator><creator>Green, Steven H.</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20200218</creationdate><title>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</title><author>Hu, Ning ; Rutherford, Mark A. ; Green, Steven H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j289t-7f17bd49f7d4c0ef21c4a545d1068810511aa45a185a1f88aef190a49dd29e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Biological Sciences</topic><topic>Brain stem</topic><topic>Calcium ions</topic><topic>Calcium permeability</topic><topic>Cochlea</topic><topic>Excitotoxicity</topic><topic>Exposure</topic><topic>Glutamatergic transmission</topic><topic>Hair cells</topic><topic>Heterogeneity</topic><topic>Neurotransmission</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Perfusion</topic><topic>Permeability</topic><topic>Propionic acid</topic><topic>Receptors</topic><topic>Relative abundance</topic><topic>Sound pressure</topic><topic>Spiral ganglion</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><topic>Trauma</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Rutherford, Mark A.</creatorcontrib><creatorcontrib>Green, Steven H.</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ning</au><au>Rutherford, Mark A.</au><au>Green, Steven H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-02-18</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><spage>3828</spage><epage>3838</epage><pages>3828-3838</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32015128</pmid><doi>10.1073/pnas.1914247117</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3828-3838 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035499 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amplitudes Biological Sciences Brain stem Calcium ions Calcium permeability Cochlea Excitotoxicity Exposure Glutamatergic transmission Hair cells Heterogeneity Neurotransmission Noise Noise levels Perfusion Permeability Propionic acid Receptors Relative abundance Sound pressure Spiral ganglion Synapses Synaptic transmission Trauma α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20of%20cochlear%20synapses%20from%20noise-induced%20excitotoxic%20trauma%20by%20blockade%20of%20Ca2+-permeable%20AMPA%20receptors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hu,%20Ning&rft.date=2020-02-18&rft.volume=117&rft.issue=7&rft.spage=3828&rft.epage=3838&rft.pages=3828-3838&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1914247117&rft_dat=%3Cjstor_pubme%3E26929021%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360026287&rft_id=info:pmid/32015128&rft_jstor_id=26929021&rfr_iscdi=true |