Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors

Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type recepto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (7), p.3828-3838
Hauptverfasser: Hu, Ning, Rutherford, Mark A., Green, Steven H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3838
container_issue 7
container_start_page 3828
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Hu, Ning
Rutherford, Mark A.
Green, Steven H.
description Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.
doi_str_mv 10.1073/pnas.1914247117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929021</jstor_id><sourcerecordid>26929021</sourcerecordid><originalsourceid>FETCH-LOGICAL-j289t-7f17bd49f7d4c0ef21c4a545d1068810511aa45a185a1f88aef190a49dd29e3</originalsourceid><addsrcrecordid>eNpVkM1r3TAQxEVpaV7TnnsqCHosTnZl2ZIuhcejX5DSQHI3a2nd-NW2XMkOef99XRIKPQx7mOHHzArxFuECwZSX80T5Ah1qpQ2ieSZ2CA6LWjt4LnYAyhR2887Eq5yPAOAqCy_FWakAK1R2J9J1igv7pY-TjJ300d8NTEnm00Rz5iy7FEc5xT5z0U9h9RwkP_h-iUt86L1cEq0jyfYk2yH6XxT4L-ZA6kMxcxqZ2oHl_vv1Xib2PC8x5dfiRUdD5jdP91zcfP50e_haXP348u2wvyqOyrqlMB2aNmjXmaA9cKfQa6p0FRBqaxEqRCJdEdpNnbXEHTog7UJQjstz8fGROq_tyMHztFUdmjn1I6VTE6lv_nem_q75Ge8bA2WlndsA758AKf5eOS_NMa5p2ho3qqy319bKmi317jF1zNu2f3hVO-VAYfkHL0t_3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360026287</pqid></control><display><type>article</type><title>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hu, Ning ; Rutherford, Mark A. ; Green, Steven H.</creator><creatorcontrib>Hu, Ning ; Rutherford, Mark A. ; Green, Steven H.</creatorcontrib><description>Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1914247117</identifier><identifier>PMID: 32015128</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Amplitudes ; Biological Sciences ; Brain stem ; Calcium ions ; Calcium permeability ; Cochlea ; Excitotoxicity ; Exposure ; Glutamatergic transmission ; Hair cells ; Heterogeneity ; Neurotransmission ; Noise ; Noise levels ; Perfusion ; Permeability ; Propionic acid ; Receptors ; Relative abundance ; Sound pressure ; Spiral ganglion ; Synapses ; Synaptic transmission ; Trauma ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3828-3838</ispartof><rights>Copyright National Academy of Sciences Feb 18, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Rutherford, Mark A.</creatorcontrib><creatorcontrib>Green, Steven H.</creatorcontrib><title>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.</description><subject>Amplitudes</subject><subject>Biological Sciences</subject><subject>Brain stem</subject><subject>Calcium ions</subject><subject>Calcium permeability</subject><subject>Cochlea</subject><subject>Excitotoxicity</subject><subject>Exposure</subject><subject>Glutamatergic transmission</subject><subject>Hair cells</subject><subject>Heterogeneity</subject><subject>Neurotransmission</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Perfusion</subject><subject>Permeability</subject><subject>Propionic acid</subject><subject>Receptors</subject><subject>Relative abundance</subject><subject>Sound pressure</subject><subject>Spiral ganglion</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><subject>Trauma</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1r3TAQxEVpaV7TnnsqCHosTnZl2ZIuhcejX5DSQHI3a2nd-NW2XMkOef99XRIKPQx7mOHHzArxFuECwZSX80T5Ah1qpQ2ieSZ2CA6LWjt4LnYAyhR2887Eq5yPAOAqCy_FWakAK1R2J9J1igv7pY-TjJ300d8NTEnm00Rz5iy7FEc5xT5z0U9h9RwkP_h-iUt86L1cEq0jyfYk2yH6XxT4L-ZA6kMxcxqZ2oHl_vv1Xib2PC8x5dfiRUdD5jdP91zcfP50e_haXP348u2wvyqOyrqlMB2aNmjXmaA9cKfQa6p0FRBqaxEqRCJdEdpNnbXEHTog7UJQjstz8fGROq_tyMHztFUdmjn1I6VTE6lv_nem_q75Ge8bA2WlndsA758AKf5eOS_NMa5p2ho3qqy319bKmi317jF1zNu2f3hVO-VAYfkHL0t_3A</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Hu, Ning</creator><creator>Rutherford, Mark A.</creator><creator>Green, Steven H.</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20200218</creationdate><title>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</title><author>Hu, Ning ; Rutherford, Mark A. ; Green, Steven H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j289t-7f17bd49f7d4c0ef21c4a545d1068810511aa45a185a1f88aef190a49dd29e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Biological Sciences</topic><topic>Brain stem</topic><topic>Calcium ions</topic><topic>Calcium permeability</topic><topic>Cochlea</topic><topic>Excitotoxicity</topic><topic>Exposure</topic><topic>Glutamatergic transmission</topic><topic>Hair cells</topic><topic>Heterogeneity</topic><topic>Neurotransmission</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Perfusion</topic><topic>Permeability</topic><topic>Propionic acid</topic><topic>Receptors</topic><topic>Relative abundance</topic><topic>Sound pressure</topic><topic>Spiral ganglion</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><topic>Trauma</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Rutherford, Mark A.</creatorcontrib><creatorcontrib>Green, Steven H.</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ning</au><au>Rutherford, Mark A.</au><au>Green, Steven H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-02-18</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><spage>3828</spage><epage>3838</epage><pages>3828-3838</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32015128</pmid><doi>10.1073/pnas.1914247117</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3828-3838
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035499
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amplitudes
Biological Sciences
Brain stem
Calcium ions
Calcium permeability
Cochlea
Excitotoxicity
Exposure
Glutamatergic transmission
Hair cells
Heterogeneity
Neurotransmission
Noise
Noise levels
Perfusion
Permeability
Propionic acid
Receptors
Relative abundance
Sound pressure
Spiral ganglion
Synapses
Synaptic transmission
Trauma
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20of%20cochlear%20synapses%20from%20noise-induced%20excitotoxic%20trauma%20by%20blockade%20of%20Ca2+-permeable%20AMPA%20receptors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hu,%20Ning&rft.date=2020-02-18&rft.volume=117&rft.issue=7&rft.spage=3828&rft.epage=3838&rft.pages=3828-3838&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1914247117&rft_dat=%3Cjstor_pubme%3E26929021%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360026287&rft_id=info:pmid/32015128&rft_jstor_id=26929021&rfr_iscdi=true