Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry
The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatmen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (7), p.3808-3818 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3818 |
---|---|
container_issue | 7 |
container_start_page | 3808 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Sylvester, Chad M. Yu, Qiongru Srivastava, A. Benjamin Marek, Scott Zheng, Annie Alexopoulos, Dimitrios Smyser, Christopher D. Shimony, Joshua S. Ortega, Mario Dierker, Donna L. Patel, Gaurav H. Nelson, Steven M. Gilmore, Adrian W. McDermott, Kathleen B. Berg, Jeffrey J. Drysdale, Andrew T. Perino, Michael T. Snyder, Abraham Z. Raut, Ryan V. Laumann, Timothy O. Gordon, Evan M. Barch, Deanna M. Rogers, Cynthia E. Greene, Deanna J. Raichle, Marcus E. Dosenbach, Nico U. F. |
description | The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients. |
doi_str_mv | 10.1073/pnas.1910842117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929019</jstor_id><sourcerecordid>26929019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoOj7WrpSCGzfVm0eTBkGQwRcIbnQd0jTVDJ1kbNqB-femjI6PVQjnuyc35yB0jOECg6CXC6_jBZYYSkYwFltogkHinDMJ22gCQESeFLaH9mOcAYAsSthFe5QALjAVE3T16Gu3dPWg2zwurHGNM1kzeNO74HWbmeC9TZel61dZaLL-3WZ6vnqrdasP0U6j22iPvs4D9Hp3-zJ9yJ-e7x-nN0-5KUD2OWF1LUpbk7IpmkYKUZsSLLfC4oJwVlWVkJwXTHChpZSUszSHK8JMabWlnB6g67XvYqjmtjbW951u1aJzc92tVNBO_VW8e1dvYakE0IKVNBmcfxl04WOwsVdzF41tW-1tGKIiNC0KDPPxrbN_6CwMXUpipHgKNMU2UpdrynQhxs42m2UwqLEYNRajfopJE6e__7Dhv5tIwMkamMU-dBudcEkkYEk_ATN2k0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360025136</pqid></control><display><type>article</type><title>Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sylvester, Chad M. ; Yu, Qiongru ; Srivastava, A. Benjamin ; Marek, Scott ; Zheng, Annie ; Alexopoulos, Dimitrios ; Smyser, Christopher D. ; Shimony, Joshua S. ; Ortega, Mario ; Dierker, Donna L. ; Patel, Gaurav H. ; Nelson, Steven M. ; Gilmore, Adrian W. ; McDermott, Kathleen B. ; Berg, Jeffrey J. ; Drysdale, Andrew T. ; Perino, Michael T. ; Snyder, Abraham Z. ; Raut, Ryan V. ; Laumann, Timothy O. ; Gordon, Evan M. ; Barch, Deanna M. ; Rogers, Cynthia E. ; Greene, Deanna J. ; Raichle, Marcus E. ; Dosenbach, Nico U. F.</creator><creatorcontrib>Sylvester, Chad M. ; Yu, Qiongru ; Srivastava, A. Benjamin ; Marek, Scott ; Zheng, Annie ; Alexopoulos, Dimitrios ; Smyser, Christopher D. ; Shimony, Joshua S. ; Ortega, Mario ; Dierker, Donna L. ; Patel, Gaurav H. ; Nelson, Steven M. ; Gilmore, Adrian W. ; McDermott, Kathleen B. ; Berg, Jeffrey J. ; Drysdale, Andrew T. ; Perino, Michael T. ; Snyder, Abraham Z. ; Raut, Ryan V. ; Laumann, Timothy O. ; Gordon, Evan M. ; Barch, Deanna M. ; Rogers, Cynthia E. ; Greene, Deanna J. ; Raichle, Marcus E. ; Dosenbach, Nico U. F.</creatorcontrib><description>The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910842117</identifier><identifier>PMID: 32015137</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Amygdala ; Amygdala - diagnostic imaging ; Amygdala - physiology ; Attention ; Biological Sciences ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain architecture ; Brain Mapping ; Cerebral cortex ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Correlation ; Female ; Functional magnetic resonance imaging ; Humans ; Illnesses ; Individuality ; Magnetic Resonance Imaging ; Male ; Networks ; Neural networks ; Psychiatry ; Subdivisions ; Substrates ; Temporal cortex ; Young Adult</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3808-3818</ispartof><rights>Copyright National Academy of Sciences Feb 18, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</citedby><cites>FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</cites><orcidid>0000-0003-0028-2098 ; 0000-0002-6228-776X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929019$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929019$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32015137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sylvester, Chad M.</creatorcontrib><creatorcontrib>Yu, Qiongru</creatorcontrib><creatorcontrib>Srivastava, A. Benjamin</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Alexopoulos, Dimitrios</creatorcontrib><creatorcontrib>Smyser, Christopher D.</creatorcontrib><creatorcontrib>Shimony, Joshua S.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Dierker, Donna L.</creatorcontrib><creatorcontrib>Patel, Gaurav H.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Gilmore, Adrian W.</creatorcontrib><creatorcontrib>McDermott, Kathleen B.</creatorcontrib><creatorcontrib>Berg, Jeffrey J.</creatorcontrib><creatorcontrib>Drysdale, Andrew T.</creatorcontrib><creatorcontrib>Perino, Michael T.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Barch, Deanna M.</creatorcontrib><creatorcontrib>Rogers, Cynthia E.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><title>Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.</description><subject>Adult</subject><subject>Amygdala</subject><subject>Amygdala - diagnostic imaging</subject><subject>Amygdala - physiology</subject><subject>Attention</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain architecture</subject><subject>Brain Mapping</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Correlation</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Illnesses</subject><subject>Individuality</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Psychiatry</subject><subject>Subdivisions</subject><subject>Substrates</subject><subject>Temporal cortex</subject><subject>Young Adult</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAUhYMoOj7WrpSCGzfVm0eTBkGQwRcIbnQd0jTVDJ1kbNqB-femjI6PVQjnuyc35yB0jOECg6CXC6_jBZYYSkYwFltogkHinDMJ22gCQESeFLaH9mOcAYAsSthFe5QALjAVE3T16Gu3dPWg2zwurHGNM1kzeNO74HWbmeC9TZel61dZaLL-3WZ6vnqrdasP0U6j22iPvs4D9Hp3-zJ9yJ-e7x-nN0-5KUD2OWF1LUpbk7IpmkYKUZsSLLfC4oJwVlWVkJwXTHChpZSUszSHK8JMabWlnB6g67XvYqjmtjbW951u1aJzc92tVNBO_VW8e1dvYakE0IKVNBmcfxl04WOwsVdzF41tW-1tGKIiNC0KDPPxrbN_6CwMXUpipHgKNMU2UpdrynQhxs42m2UwqLEYNRajfopJE6e__7Dhv5tIwMkamMU-dBudcEkkYEk_ATN2k0k</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Sylvester, Chad M.</creator><creator>Yu, Qiongru</creator><creator>Srivastava, A. Benjamin</creator><creator>Marek, Scott</creator><creator>Zheng, Annie</creator><creator>Alexopoulos, Dimitrios</creator><creator>Smyser, Christopher D.</creator><creator>Shimony, Joshua S.</creator><creator>Ortega, Mario</creator><creator>Dierker, Donna L.</creator><creator>Patel, Gaurav H.</creator><creator>Nelson, Steven M.</creator><creator>Gilmore, Adrian W.</creator><creator>McDermott, Kathleen B.</creator><creator>Berg, Jeffrey J.</creator><creator>Drysdale, Andrew T.</creator><creator>Perino, Michael T.</creator><creator>Snyder, Abraham Z.</creator><creator>Raut, Ryan V.</creator><creator>Laumann, Timothy O.</creator><creator>Gordon, Evan M.</creator><creator>Barch, Deanna M.</creator><creator>Rogers, Cynthia E.</creator><creator>Greene, Deanna J.</creator><creator>Raichle, Marcus E.</creator><creator>Dosenbach, Nico U. F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0028-2098</orcidid><orcidid>https://orcid.org/0000-0002-6228-776X</orcidid></search><sort><creationdate>20200218</creationdate><title>Individual-specific functional connectivity of the amygdala</title><author>Sylvester, Chad M. ; Yu, Qiongru ; Srivastava, A. Benjamin ; Marek, Scott ; Zheng, Annie ; Alexopoulos, Dimitrios ; Smyser, Christopher D. ; Shimony, Joshua S. ; Ortega, Mario ; Dierker, Donna L. ; Patel, Gaurav H. ; Nelson, Steven M. ; Gilmore, Adrian W. ; McDermott, Kathleen B. ; Berg, Jeffrey J. ; Drysdale, Andrew T. ; Perino, Michael T. ; Snyder, Abraham Z. ; Raut, Ryan V. ; Laumann, Timothy O. ; Gordon, Evan M. ; Barch, Deanna M. ; Rogers, Cynthia E. ; Greene, Deanna J. ; Raichle, Marcus E. ; Dosenbach, Nico U. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Amygdala</topic><topic>Amygdala - diagnostic imaging</topic><topic>Amygdala - physiology</topic><topic>Attention</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain architecture</topic><topic>Brain Mapping</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Correlation</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Illnesses</topic><topic>Individuality</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Psychiatry</topic><topic>Subdivisions</topic><topic>Substrates</topic><topic>Temporal cortex</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sylvester, Chad M.</creatorcontrib><creatorcontrib>Yu, Qiongru</creatorcontrib><creatorcontrib>Srivastava, A. Benjamin</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Alexopoulos, Dimitrios</creatorcontrib><creatorcontrib>Smyser, Christopher D.</creatorcontrib><creatorcontrib>Shimony, Joshua S.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Dierker, Donna L.</creatorcontrib><creatorcontrib>Patel, Gaurav H.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Gilmore, Adrian W.</creatorcontrib><creatorcontrib>McDermott, Kathleen B.</creatorcontrib><creatorcontrib>Berg, Jeffrey J.</creatorcontrib><creatorcontrib>Drysdale, Andrew T.</creatorcontrib><creatorcontrib>Perino, Michael T.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Barch, Deanna M.</creatorcontrib><creatorcontrib>Rogers, Cynthia E.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sylvester, Chad M.</au><au>Yu, Qiongru</au><au>Srivastava, A. Benjamin</au><au>Marek, Scott</au><au>Zheng, Annie</au><au>Alexopoulos, Dimitrios</au><au>Smyser, Christopher D.</au><au>Shimony, Joshua S.</au><au>Ortega, Mario</au><au>Dierker, Donna L.</au><au>Patel, Gaurav H.</au><au>Nelson, Steven M.</au><au>Gilmore, Adrian W.</au><au>McDermott, Kathleen B.</au><au>Berg, Jeffrey J.</au><au>Drysdale, Andrew T.</au><au>Perino, Michael T.</au><au>Snyder, Abraham Z.</au><au>Raut, Ryan V.</au><au>Laumann, Timothy O.</au><au>Gordon, Evan M.</au><au>Barch, Deanna M.</au><au>Rogers, Cynthia E.</au><au>Greene, Deanna J.</au><au>Raichle, Marcus E.</au><au>Dosenbach, Nico U. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><spage>3808</spage><epage>3818</epage><pages>3808-3818</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32015137</pmid><doi>10.1073/pnas.1910842117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0028-2098</orcidid><orcidid>https://orcid.org/0000-0002-6228-776X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3808-3818 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035483 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adult Amygdala Amygdala - diagnostic imaging Amygdala - physiology Attention Biological Sciences Brain Brain - diagnostic imaging Brain - physiopathology Brain architecture Brain Mapping Cerebral cortex Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Correlation Female Functional magnetic resonance imaging Humans Illnesses Individuality Magnetic Resonance Imaging Male Networks Neural networks Psychiatry Subdivisions Substrates Temporal cortex Young Adult |
title | Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual-specific%20functional%20connectivity%20of%20the%20amygdala:%20A%20substrate%20for%20precision%20psychiatry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sylvester,%20Chad%20M.&rft.date=2020-02-18&rft.volume=117&rft.issue=7&rft.spage=3808&rft.epage=3818&rft.pages=3808-3818&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910842117&rft_dat=%3Cjstor_pubme%3E26929019%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360025136&rft_id=info:pmid/32015137&rft_jstor_id=26929019&rfr_iscdi=true |