Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry

The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (7), p.3808-3818
Hauptverfasser: Sylvester, Chad M., Yu, Qiongru, Srivastava, A. Benjamin, Marek, Scott, Zheng, Annie, Alexopoulos, Dimitrios, Smyser, Christopher D., Shimony, Joshua S., Ortega, Mario, Dierker, Donna L., Patel, Gaurav H., Nelson, Steven M., Gilmore, Adrian W., McDermott, Kathleen B., Berg, Jeffrey J., Drysdale, Andrew T., Perino, Michael T., Snyder, Abraham Z., Raut, Ryan V., Laumann, Timothy O., Gordon, Evan M., Barch, Deanna M., Rogers, Cynthia E., Greene, Deanna J., Raichle, Marcus E., Dosenbach, Nico U. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3818
container_issue 7
container_start_page 3808
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Sylvester, Chad M.
Yu, Qiongru
Srivastava, A. Benjamin
Marek, Scott
Zheng, Annie
Alexopoulos, Dimitrios
Smyser, Christopher D.
Shimony, Joshua S.
Ortega, Mario
Dierker, Donna L.
Patel, Gaurav H.
Nelson, Steven M.
Gilmore, Adrian W.
McDermott, Kathleen B.
Berg, Jeffrey J.
Drysdale, Andrew T.
Perino, Michael T.
Snyder, Abraham Z.
Raut, Ryan V.
Laumann, Timothy O.
Gordon, Evan M.
Barch, Deanna M.
Rogers, Cynthia E.
Greene, Deanna J.
Raichle, Marcus E.
Dosenbach, Nico U. F.
description The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.
doi_str_mv 10.1073/pnas.1910842117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929019</jstor_id><sourcerecordid>26929019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoOj7WrpSCGzfVm0eTBkGQwRcIbnQd0jTVDJ1kbNqB-femjI6PVQjnuyc35yB0jOECg6CXC6_jBZYYSkYwFltogkHinDMJ22gCQESeFLaH9mOcAYAsSthFe5QALjAVE3T16Gu3dPWg2zwurHGNM1kzeNO74HWbmeC9TZel61dZaLL-3WZ6vnqrdasP0U6j22iPvs4D9Hp3-zJ9yJ-e7x-nN0-5KUD2OWF1LUpbk7IpmkYKUZsSLLfC4oJwVlWVkJwXTHChpZSUszSHK8JMabWlnB6g67XvYqjmtjbW951u1aJzc92tVNBO_VW8e1dvYakE0IKVNBmcfxl04WOwsVdzF41tW-1tGKIiNC0KDPPxrbN_6CwMXUpipHgKNMU2UpdrynQhxs42m2UwqLEYNRajfopJE6e__7Dhv5tIwMkamMU-dBudcEkkYEk_ATN2k0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360025136</pqid></control><display><type>article</type><title>Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sylvester, Chad M. ; Yu, Qiongru ; Srivastava, A. Benjamin ; Marek, Scott ; Zheng, Annie ; Alexopoulos, Dimitrios ; Smyser, Christopher D. ; Shimony, Joshua S. ; Ortega, Mario ; Dierker, Donna L. ; Patel, Gaurav H. ; Nelson, Steven M. ; Gilmore, Adrian W. ; McDermott, Kathleen B. ; Berg, Jeffrey J. ; Drysdale, Andrew T. ; Perino, Michael T. ; Snyder, Abraham Z. ; Raut, Ryan V. ; Laumann, Timothy O. ; Gordon, Evan M. ; Barch, Deanna M. ; Rogers, Cynthia E. ; Greene, Deanna J. ; Raichle, Marcus E. ; Dosenbach, Nico U. F.</creator><creatorcontrib>Sylvester, Chad M. ; Yu, Qiongru ; Srivastava, A. Benjamin ; Marek, Scott ; Zheng, Annie ; Alexopoulos, Dimitrios ; Smyser, Christopher D. ; Shimony, Joshua S. ; Ortega, Mario ; Dierker, Donna L. ; Patel, Gaurav H. ; Nelson, Steven M. ; Gilmore, Adrian W. ; McDermott, Kathleen B. ; Berg, Jeffrey J. ; Drysdale, Andrew T. ; Perino, Michael T. ; Snyder, Abraham Z. ; Raut, Ryan V. ; Laumann, Timothy O. ; Gordon, Evan M. ; Barch, Deanna M. ; Rogers, Cynthia E. ; Greene, Deanna J. ; Raichle, Marcus E. ; Dosenbach, Nico U. F.</creatorcontrib><description>The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910842117</identifier><identifier>PMID: 32015137</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Amygdala ; Amygdala - diagnostic imaging ; Amygdala - physiology ; Attention ; Biological Sciences ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain architecture ; Brain Mapping ; Cerebral cortex ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Correlation ; Female ; Functional magnetic resonance imaging ; Humans ; Illnesses ; Individuality ; Magnetic Resonance Imaging ; Male ; Networks ; Neural networks ; Psychiatry ; Subdivisions ; Substrates ; Temporal cortex ; Young Adult</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3808-3818</ispartof><rights>Copyright National Academy of Sciences Feb 18, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</citedby><cites>FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</cites><orcidid>0000-0003-0028-2098 ; 0000-0002-6228-776X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929019$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929019$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32015137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sylvester, Chad M.</creatorcontrib><creatorcontrib>Yu, Qiongru</creatorcontrib><creatorcontrib>Srivastava, A. Benjamin</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Alexopoulos, Dimitrios</creatorcontrib><creatorcontrib>Smyser, Christopher D.</creatorcontrib><creatorcontrib>Shimony, Joshua S.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Dierker, Donna L.</creatorcontrib><creatorcontrib>Patel, Gaurav H.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Gilmore, Adrian W.</creatorcontrib><creatorcontrib>McDermott, Kathleen B.</creatorcontrib><creatorcontrib>Berg, Jeffrey J.</creatorcontrib><creatorcontrib>Drysdale, Andrew T.</creatorcontrib><creatorcontrib>Perino, Michael T.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Barch, Deanna M.</creatorcontrib><creatorcontrib>Rogers, Cynthia E.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><title>Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.</description><subject>Adult</subject><subject>Amygdala</subject><subject>Amygdala - diagnostic imaging</subject><subject>Amygdala - physiology</subject><subject>Attention</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain architecture</subject><subject>Brain Mapping</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Correlation</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Illnesses</subject><subject>Individuality</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Psychiatry</subject><subject>Subdivisions</subject><subject>Substrates</subject><subject>Temporal cortex</subject><subject>Young Adult</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAUhYMoOj7WrpSCGzfVm0eTBkGQwRcIbnQd0jTVDJ1kbNqB-femjI6PVQjnuyc35yB0jOECg6CXC6_jBZYYSkYwFltogkHinDMJ22gCQESeFLaH9mOcAYAsSthFe5QALjAVE3T16Gu3dPWg2zwurHGNM1kzeNO74HWbmeC9TZel61dZaLL-3WZ6vnqrdasP0U6j22iPvs4D9Hp3-zJ9yJ-e7x-nN0-5KUD2OWF1LUpbk7IpmkYKUZsSLLfC4oJwVlWVkJwXTHChpZSUszSHK8JMabWlnB6g67XvYqjmtjbW951u1aJzc92tVNBO_VW8e1dvYakE0IKVNBmcfxl04WOwsVdzF41tW-1tGKIiNC0KDPPxrbN_6CwMXUpipHgKNMU2UpdrynQhxs42m2UwqLEYNRajfopJE6e__7Dhv5tIwMkamMU-dBudcEkkYEk_ATN2k0k</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Sylvester, Chad M.</creator><creator>Yu, Qiongru</creator><creator>Srivastava, A. Benjamin</creator><creator>Marek, Scott</creator><creator>Zheng, Annie</creator><creator>Alexopoulos, Dimitrios</creator><creator>Smyser, Christopher D.</creator><creator>Shimony, Joshua S.</creator><creator>Ortega, Mario</creator><creator>Dierker, Donna L.</creator><creator>Patel, Gaurav H.</creator><creator>Nelson, Steven M.</creator><creator>Gilmore, Adrian W.</creator><creator>McDermott, Kathleen B.</creator><creator>Berg, Jeffrey J.</creator><creator>Drysdale, Andrew T.</creator><creator>Perino, Michael T.</creator><creator>Snyder, Abraham Z.</creator><creator>Raut, Ryan V.</creator><creator>Laumann, Timothy O.</creator><creator>Gordon, Evan M.</creator><creator>Barch, Deanna M.</creator><creator>Rogers, Cynthia E.</creator><creator>Greene, Deanna J.</creator><creator>Raichle, Marcus E.</creator><creator>Dosenbach, Nico U. F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0028-2098</orcidid><orcidid>https://orcid.org/0000-0002-6228-776X</orcidid></search><sort><creationdate>20200218</creationdate><title>Individual-specific functional connectivity of the amygdala</title><author>Sylvester, Chad M. ; Yu, Qiongru ; Srivastava, A. Benjamin ; Marek, Scott ; Zheng, Annie ; Alexopoulos, Dimitrios ; Smyser, Christopher D. ; Shimony, Joshua S. ; Ortega, Mario ; Dierker, Donna L. ; Patel, Gaurav H. ; Nelson, Steven M. ; Gilmore, Adrian W. ; McDermott, Kathleen B. ; Berg, Jeffrey J. ; Drysdale, Andrew T. ; Perino, Michael T. ; Snyder, Abraham Z. ; Raut, Ryan V. ; Laumann, Timothy O. ; Gordon, Evan M. ; Barch, Deanna M. ; Rogers, Cynthia E. ; Greene, Deanna J. ; Raichle, Marcus E. ; Dosenbach, Nico U. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-24dd78ed28f5ff977dc80e6e7e15264bbb796654767a999364c501b24c8eae363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Amygdala</topic><topic>Amygdala - diagnostic imaging</topic><topic>Amygdala - physiology</topic><topic>Attention</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain architecture</topic><topic>Brain Mapping</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Correlation</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Illnesses</topic><topic>Individuality</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Psychiatry</topic><topic>Subdivisions</topic><topic>Substrates</topic><topic>Temporal cortex</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sylvester, Chad M.</creatorcontrib><creatorcontrib>Yu, Qiongru</creatorcontrib><creatorcontrib>Srivastava, A. Benjamin</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Alexopoulos, Dimitrios</creatorcontrib><creatorcontrib>Smyser, Christopher D.</creatorcontrib><creatorcontrib>Shimony, Joshua S.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Dierker, Donna L.</creatorcontrib><creatorcontrib>Patel, Gaurav H.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Gilmore, Adrian W.</creatorcontrib><creatorcontrib>McDermott, Kathleen B.</creatorcontrib><creatorcontrib>Berg, Jeffrey J.</creatorcontrib><creatorcontrib>Drysdale, Andrew T.</creatorcontrib><creatorcontrib>Perino, Michael T.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Barch, Deanna M.</creatorcontrib><creatorcontrib>Rogers, Cynthia E.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sylvester, Chad M.</au><au>Yu, Qiongru</au><au>Srivastava, A. Benjamin</au><au>Marek, Scott</au><au>Zheng, Annie</au><au>Alexopoulos, Dimitrios</au><au>Smyser, Christopher D.</au><au>Shimony, Joshua S.</au><au>Ortega, Mario</au><au>Dierker, Donna L.</au><au>Patel, Gaurav H.</au><au>Nelson, Steven M.</au><au>Gilmore, Adrian W.</au><au>McDermott, Kathleen B.</au><au>Berg, Jeffrey J.</au><au>Drysdale, Andrew T.</au><au>Perino, Michael T.</au><au>Snyder, Abraham Z.</au><au>Raut, Ryan V.</au><au>Laumann, Timothy O.</au><au>Gordon, Evan M.</au><au>Barch, Deanna M.</au><au>Rogers, Cynthia E.</au><au>Greene, Deanna J.</au><au>Raichle, Marcus E.</au><au>Dosenbach, Nico U. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><spage>3808</spage><epage>3818</epage><pages>3808-3818</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cinguloopercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32015137</pmid><doi>10.1073/pnas.1910842117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0028-2098</orcidid><orcidid>https://orcid.org/0000-0002-6228-776X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (7), p.3808-3818
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035483
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adult
Amygdala
Amygdala - diagnostic imaging
Amygdala - physiology
Attention
Biological Sciences
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain architecture
Brain Mapping
Cerebral cortex
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Correlation
Female
Functional magnetic resonance imaging
Humans
Illnesses
Individuality
Magnetic Resonance Imaging
Male
Networks
Neural networks
Psychiatry
Subdivisions
Substrates
Temporal cortex
Young Adult
title Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual-specific%20functional%20connectivity%20of%20the%20amygdala:%20A%20substrate%20for%20precision%20psychiatry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sylvester,%20Chad%20M.&rft.date=2020-02-18&rft.volume=117&rft.issue=7&rft.spage=3808&rft.epage=3818&rft.pages=3808-3818&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910842117&rft_dat=%3Cjstor_pubme%3E26929019%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360025136&rft_id=info:pmid/32015137&rft_jstor_id=26929019&rfr_iscdi=true