The effects of electroporation buffer composition on cell viability and electro-transfection efficiency

Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.3053, Article 3053
Hauptverfasser: Sherba, Joseph J., Hogquist, Stephen, Lin, Hao, Shan, Jerry W., Shreiber, David I., Zahn, Jeffrey D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3053
container_title Scientific reports
container_volume 10
creator Sherba, Joseph J.
Hogquist, Stephen
Lin, Hao
Shan, Jerry W.
Shreiber, David I.
Zahn, Jeffrey D.
description Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m 2 ). The energy of the pulse application primarily dictated cell viability, with Mg 2+ -based buffers expanding the reversible electroporation range. The enhancement of viability with Mg 2+ -based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg 2+ also hinders eTE compared to K + -based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.
doi_str_mv 10.1038/s41598-020-59790-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359369514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qCFYLX4BDFamXXgITO07iS6UKlT8SEhc4W44zWYyy9tZOVuy37-wuUOgBy5JHnt979ugxdlrAWQGiOU9lIVWTA4dcqlpB_vyFzTiUMueC86_v6iN2ktIT0JJclYU6ZEeCQwO8UjO2uH_EDPse7Ziy0Gc4UBXDKkQzuuCzdqJezGxYrkJyuyvaFochWzvTusGNm8z47lWYj9H4tLXbomTsrENvN8fsoDdDwpOXc84eLn_fX1znt3dXNxe_bnMr63rMlehbqwqoO2kl70qlrOLWYF1ZUXdYQdW0IGpELgFaqDphRNPw3nYKSIlizn7ufVdTu8TOoqcPDXoV3dLEjQ7G6Y8d7x71Iqx1DUIUZUMGP14MYvgzYRr10qXtvMZjmJLmolJCCVFxQr__hz6FKXoajyipCJRFSRTfUzaGlCL2b58pQG-j1PsoNUWpd1HqZxJ9ez_Gm-Q1OALEHkjU8guM_97-xPYv8C-tDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359369514</pqid></control><display><type>article</type><title>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sherba, Joseph J. ; Hogquist, Stephen ; Lin, Hao ; Shan, Jerry W. ; Shreiber, David I. ; Zahn, Jeffrey D.</creator><creatorcontrib>Sherba, Joseph J. ; Hogquist, Stephen ; Lin, Hao ; Shan, Jerry W. ; Shreiber, David I. ; Zahn, Jeffrey D.</creatorcontrib><description>Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m 2 ). The energy of the pulse application primarily dictated cell viability, with Mg 2+ -based buffers expanding the reversible electroporation range. The enhancement of viability with Mg 2+ -based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg 2+ also hinders eTE compared to K + -based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59790-x</identifier><identifier>PMID: 32080269</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42/109 ; 42/35 ; 631/1647/2300/1851 ; 631/61/2300/1851 ; 82/80 ; 96/106 ; 96/63 ; Adenosine Triphosphatases - metabolism ; Animals ; Buffers ; Cell membranes ; Cell Survival - drug effects ; Cell viability ; Conductivity ; Deoxyribonucleic acid ; DNA ; Efficiency ; Electricity ; Electroporation ; Energy ; Energy charge ; Experiments ; FDA approval ; Fibroblasts ; Green fluorescent protein ; Homeostasis ; Humanities and Social Sciences ; Lidocaine ; Magnesium ; Magnesium - pharmacology ; Mice ; multidisciplinary ; Multiple myeloma ; NIH 3T3 Cells ; Proteins ; Ribonucleic acid ; RNA ; Salts ; Science ; Science (multidisciplinary) ; Transfection</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.3053, Article 3053</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</citedby><cites>FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033148/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherba, Joseph J.</creatorcontrib><creatorcontrib>Hogquist, Stephen</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><creatorcontrib>Shan, Jerry W.</creatorcontrib><creatorcontrib>Shreiber, David I.</creatorcontrib><creatorcontrib>Zahn, Jeffrey D.</creatorcontrib><title>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m 2 ). The energy of the pulse application primarily dictated cell viability, with Mg 2+ -based buffers expanding the reversible electroporation range. The enhancement of viability with Mg 2+ -based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg 2+ also hinders eTE compared to K + -based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.</description><subject>42/109</subject><subject>42/35</subject><subject>631/1647/2300/1851</subject><subject>631/61/2300/1851</subject><subject>82/80</subject><subject>96/106</subject><subject>96/63</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Animals</subject><subject>Buffers</subject><subject>Cell membranes</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Conductivity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electroporation</subject><subject>Energy</subject><subject>Energy charge</subject><subject>Experiments</subject><subject>FDA approval</subject><subject>Fibroblasts</subject><subject>Green fluorescent protein</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Lidocaine</subject><subject>Magnesium</subject><subject>Magnesium - pharmacology</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multiple myeloma</subject><subject>NIH 3T3 Cells</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Salts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transfection</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxa2qCFYLX4BDFamXXgITO07iS6UKlT8SEhc4W44zWYyy9tZOVuy37-wuUOgBy5JHnt979ugxdlrAWQGiOU9lIVWTA4dcqlpB_vyFzTiUMueC86_v6iN2ktIT0JJclYU6ZEeCQwO8UjO2uH_EDPse7Ziy0Gc4UBXDKkQzuuCzdqJezGxYrkJyuyvaFochWzvTusGNm8z47lWYj9H4tLXbomTsrENvN8fsoDdDwpOXc84eLn_fX1znt3dXNxe_bnMr63rMlehbqwqoO2kl70qlrOLWYF1ZUXdYQdW0IGpELgFaqDphRNPw3nYKSIlizn7ufVdTu8TOoqcPDXoV3dLEjQ7G6Y8d7x71Iqx1DUIUZUMGP14MYvgzYRr10qXtvMZjmJLmolJCCVFxQr__hz6FKXoajyipCJRFSRTfUzaGlCL2b58pQG-j1PsoNUWpd1HqZxJ9ez_Gm-Q1OALEHkjU8guM_97-xPYv8C-tDw</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Sherba, Joseph J.</creator><creator>Hogquist, Stephen</creator><creator>Lin, Hao</creator><creator>Shan, Jerry W.</creator><creator>Shreiber, David I.</creator><creator>Zahn, Jeffrey D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200220</creationdate><title>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</title><author>Sherba, Joseph J. ; Hogquist, Stephen ; Lin, Hao ; Shan, Jerry W. ; Shreiber, David I. ; Zahn, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>42/109</topic><topic>42/35</topic><topic>631/1647/2300/1851</topic><topic>631/61/2300/1851</topic><topic>82/80</topic><topic>96/106</topic><topic>96/63</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Animals</topic><topic>Buffers</topic><topic>Cell membranes</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Conductivity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electroporation</topic><topic>Energy</topic><topic>Energy charge</topic><topic>Experiments</topic><topic>FDA approval</topic><topic>Fibroblasts</topic><topic>Green fluorescent protein</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Lidocaine</topic><topic>Magnesium</topic><topic>Magnesium - pharmacology</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multiple myeloma</topic><topic>NIH 3T3 Cells</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Salts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherba, Joseph J.</creatorcontrib><creatorcontrib>Hogquist, Stephen</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><creatorcontrib>Shan, Jerry W.</creatorcontrib><creatorcontrib>Shreiber, David I.</creatorcontrib><creatorcontrib>Zahn, Jeffrey D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherba, Joseph J.</au><au>Hogquist, Stephen</au><au>Lin, Hao</au><au>Shan, Jerry W.</au><au>Shreiber, David I.</au><au>Zahn, Jeffrey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3053</spage><pages>3053-</pages><artnum>3053</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m 2 ). The energy of the pulse application primarily dictated cell viability, with Mg 2+ -based buffers expanding the reversible electroporation range. The enhancement of viability with Mg 2+ -based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg 2+ also hinders eTE compared to K + -based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32080269</pmid><doi>10.1038/s41598-020-59790-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-02, Vol.10 (1), p.3053, Article 3053
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033148
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 42/109
42/35
631/1647/2300/1851
631/61/2300/1851
82/80
96/106
96/63
Adenosine Triphosphatases - metabolism
Animals
Buffers
Cell membranes
Cell Survival - drug effects
Cell viability
Conductivity
Deoxyribonucleic acid
DNA
Efficiency
Electricity
Electroporation
Energy
Energy charge
Experiments
FDA approval
Fibroblasts
Green fluorescent protein
Homeostasis
Humanities and Social Sciences
Lidocaine
Magnesium
Magnesium - pharmacology
Mice
multidisciplinary
Multiple myeloma
NIH 3T3 Cells
Proteins
Ribonucleic acid
RNA
Salts
Science
Science (multidisciplinary)
Transfection
title The effects of electroporation buffer composition on cell viability and electro-transfection efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20electroporation%20buffer%20composition%20on%20cell%20viability%20and%20electro-transfection%20efficiency&rft.jtitle=Scientific%20reports&rft.au=Sherba,%20Joseph%20J.&rft.date=2020-02-20&rft.volume=10&rft.issue=1&rft.spage=3053&rft.pages=3053-&rft.artnum=3053&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59790-x&rft_dat=%3Cproquest_pubme%3E2359369514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359369514&rft_id=info:pmid/32080269&rfr_iscdi=true