The effects of electroporation buffer composition on cell viability and electro-transfection efficiency
Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eT...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.3053, Article 3053 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3053 |
container_title | Scientific reports |
container_volume | 10 |
creator | Sherba, Joseph J. Hogquist, Stephen Lin, Hao Shan, Jerry W. Shreiber, David I. Zahn, Jeffrey D. |
description | Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m
2
). The energy of the pulse application primarily dictated cell viability, with Mg
2+
-based buffers expanding the reversible electroporation range. The enhancement of viability with Mg
2+
-based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg
2+
also hinders eTE compared to K
+
-based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE. |
doi_str_mv | 10.1038/s41598-020-59790-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359369514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qCFYLX4BDFamXXgITO07iS6UKlT8SEhc4W44zWYyy9tZOVuy37-wuUOgBy5JHnt979ugxdlrAWQGiOU9lIVWTA4dcqlpB_vyFzTiUMueC86_v6iN2ktIT0JJclYU6ZEeCQwO8UjO2uH_EDPse7Ziy0Gc4UBXDKkQzuuCzdqJezGxYrkJyuyvaFochWzvTusGNm8z47lWYj9H4tLXbomTsrENvN8fsoDdDwpOXc84eLn_fX1znt3dXNxe_bnMr63rMlehbqwqoO2kl70qlrOLWYF1ZUXdYQdW0IGpELgFaqDphRNPw3nYKSIlizn7ufVdTu8TOoqcPDXoV3dLEjQ7G6Y8d7x71Iqx1DUIUZUMGP14MYvgzYRr10qXtvMZjmJLmolJCCVFxQr__hz6FKXoajyipCJRFSRTfUzaGlCL2b58pQG-j1PsoNUWpd1HqZxJ9ez_Gm-Q1OALEHkjU8guM_97-xPYv8C-tDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359369514</pqid></control><display><type>article</type><title>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sherba, Joseph J. ; Hogquist, Stephen ; Lin, Hao ; Shan, Jerry W. ; Shreiber, David I. ; Zahn, Jeffrey D.</creator><creatorcontrib>Sherba, Joseph J. ; Hogquist, Stephen ; Lin, Hao ; Shan, Jerry W. ; Shreiber, David I. ; Zahn, Jeffrey D.</creatorcontrib><description>Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m
2
). The energy of the pulse application primarily dictated cell viability, with Mg
2+
-based buffers expanding the reversible electroporation range. The enhancement of viability with Mg
2+
-based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg
2+
also hinders eTE compared to K
+
-based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59790-x</identifier><identifier>PMID: 32080269</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42/109 ; 42/35 ; 631/1647/2300/1851 ; 631/61/2300/1851 ; 82/80 ; 96/106 ; 96/63 ; Adenosine Triphosphatases - metabolism ; Animals ; Buffers ; Cell membranes ; Cell Survival - drug effects ; Cell viability ; Conductivity ; Deoxyribonucleic acid ; DNA ; Efficiency ; Electricity ; Electroporation ; Energy ; Energy charge ; Experiments ; FDA approval ; Fibroblasts ; Green fluorescent protein ; Homeostasis ; Humanities and Social Sciences ; Lidocaine ; Magnesium ; Magnesium - pharmacology ; Mice ; multidisciplinary ; Multiple myeloma ; NIH 3T3 Cells ; Proteins ; Ribonucleic acid ; RNA ; Salts ; Science ; Science (multidisciplinary) ; Transfection</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.3053, Article 3053</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</citedby><cites>FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033148/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherba, Joseph J.</creatorcontrib><creatorcontrib>Hogquist, Stephen</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><creatorcontrib>Shan, Jerry W.</creatorcontrib><creatorcontrib>Shreiber, David I.</creatorcontrib><creatorcontrib>Zahn, Jeffrey D.</creatorcontrib><title>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m
2
). The energy of the pulse application primarily dictated cell viability, with Mg
2+
-based buffers expanding the reversible electroporation range. The enhancement of viability with Mg
2+
-based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg
2+
also hinders eTE compared to K
+
-based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.</description><subject>42/109</subject><subject>42/35</subject><subject>631/1647/2300/1851</subject><subject>631/61/2300/1851</subject><subject>82/80</subject><subject>96/106</subject><subject>96/63</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Animals</subject><subject>Buffers</subject><subject>Cell membranes</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Conductivity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electroporation</subject><subject>Energy</subject><subject>Energy charge</subject><subject>Experiments</subject><subject>FDA approval</subject><subject>Fibroblasts</subject><subject>Green fluorescent protein</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Lidocaine</subject><subject>Magnesium</subject><subject>Magnesium - pharmacology</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multiple myeloma</subject><subject>NIH 3T3 Cells</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Salts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transfection</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxa2qCFYLX4BDFamXXgITO07iS6UKlT8SEhc4W44zWYyy9tZOVuy37-wuUOgBy5JHnt979ugxdlrAWQGiOU9lIVWTA4dcqlpB_vyFzTiUMueC86_v6iN2ktIT0JJclYU6ZEeCQwO8UjO2uH_EDPse7Ziy0Gc4UBXDKkQzuuCzdqJezGxYrkJyuyvaFochWzvTusGNm8z47lWYj9H4tLXbomTsrENvN8fsoDdDwpOXc84eLn_fX1znt3dXNxe_bnMr63rMlehbqwqoO2kl70qlrOLWYF1ZUXdYQdW0IGpELgFaqDphRNPw3nYKSIlizn7ufVdTu8TOoqcPDXoV3dLEjQ7G6Y8d7x71Iqx1DUIUZUMGP14MYvgzYRr10qXtvMZjmJLmolJCCVFxQr__hz6FKXoajyipCJRFSRTfUzaGlCL2b58pQG-j1PsoNUWpd1HqZxJ9ez_Gm-Q1OALEHkjU8guM_97-xPYv8C-tDw</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Sherba, Joseph J.</creator><creator>Hogquist, Stephen</creator><creator>Lin, Hao</creator><creator>Shan, Jerry W.</creator><creator>Shreiber, David I.</creator><creator>Zahn, Jeffrey D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200220</creationdate><title>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</title><author>Sherba, Joseph J. ; Hogquist, Stephen ; Lin, Hao ; Shan, Jerry W. ; Shreiber, David I. ; Zahn, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-93fbc9107d5c52d499c92cae76c37de6068b037ee2500b06d3a3882fcd90fbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>42/109</topic><topic>42/35</topic><topic>631/1647/2300/1851</topic><topic>631/61/2300/1851</topic><topic>82/80</topic><topic>96/106</topic><topic>96/63</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Animals</topic><topic>Buffers</topic><topic>Cell membranes</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Conductivity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electroporation</topic><topic>Energy</topic><topic>Energy charge</topic><topic>Experiments</topic><topic>FDA approval</topic><topic>Fibroblasts</topic><topic>Green fluorescent protein</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Lidocaine</topic><topic>Magnesium</topic><topic>Magnesium - pharmacology</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multiple myeloma</topic><topic>NIH 3T3 Cells</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Salts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherba, Joseph J.</creatorcontrib><creatorcontrib>Hogquist, Stephen</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><creatorcontrib>Shan, Jerry W.</creatorcontrib><creatorcontrib>Shreiber, David I.</creatorcontrib><creatorcontrib>Zahn, Jeffrey D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherba, Joseph J.</au><au>Hogquist, Stephen</au><au>Lin, Hao</au><au>Shan, Jerry W.</au><au>Shreiber, David I.</au><au>Zahn, Jeffrey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of electroporation buffer composition on cell viability and electro-transfection efficiency</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3053</spage><pages>3053-</pages><artnum>3053</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m
2
). The energy of the pulse application primarily dictated cell viability, with Mg
2+
-based buffers expanding the reversible electroporation range. The enhancement of viability with Mg
2+
-based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg
2+
also hinders eTE compared to K
+
-based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32080269</pmid><doi>10.1038/s41598-020-59790-x</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.3053, Article 3053 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033148 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 42/109 42/35 631/1647/2300/1851 631/61/2300/1851 82/80 96/106 96/63 Adenosine Triphosphatases - metabolism Animals Buffers Cell membranes Cell Survival - drug effects Cell viability Conductivity Deoxyribonucleic acid DNA Efficiency Electricity Electroporation Energy Energy charge Experiments FDA approval Fibroblasts Green fluorescent protein Homeostasis Humanities and Social Sciences Lidocaine Magnesium Magnesium - pharmacology Mice multidisciplinary Multiple myeloma NIH 3T3 Cells Proteins Ribonucleic acid RNA Salts Science Science (multidisciplinary) Transfection |
title | The effects of electroporation buffer composition on cell viability and electro-transfection efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20electroporation%20buffer%20composition%20on%20cell%20viability%20and%20electro-transfection%20efficiency&rft.jtitle=Scientific%20reports&rft.au=Sherba,%20Joseph%20J.&rft.date=2020-02-20&rft.volume=10&rft.issue=1&rft.spage=3053&rft.pages=3053-&rft.artnum=3053&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59790-x&rft_dat=%3Cproquest_pubme%3E2359369514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359369514&rft_id=info:pmid/32080269&rfr_iscdi=true |