Resolving the positions of defects in superconducting quantum bits

Solid-state quantum coherent devices are quickly progressing. Superconducting circuits, for instance, have already been used to demonstrate prototype quantum processors comprising a few tens of quantum bits. This development also revealed that a major part of decoherence and energy loss in such devi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.3090-3090, Article 3090
Hauptverfasser: Bilmes, Alexander, Megrant, Anthony, Klimov, Paul, Weiss, Georg, Martinis, John M., Ustinov, Alexey V., Lisenfeld, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3090
container_issue 1
container_start_page 3090
container_title Scientific reports
container_volume 10
creator Bilmes, Alexander
Megrant, Anthony
Klimov, Paul
Weiss, Georg
Martinis, John M.
Ustinov, Alexey V.
Lisenfeld, Jürgen
description Solid-state quantum coherent devices are quickly progressing. Superconducting circuits, for instance, have already been used to demonstrate prototype quantum processors comprising a few tens of quantum bits. This development also revealed that a major part of decoherence and energy loss in such devices originates from a bath of parasitic material defects. However, neither the microscopic structure of defects nor the mechanisms by which they emerge during sample fabrication are understood. Here, we present a technique to obtain information on locations of defects relative to the thin film edge of the qubit circuit. Resonance frequencies of defects are tuned by exposing the qubit sample to electric fields generated by electrodes surrounding the chip. By determining the defect’s coupling strength to each electrode and comparing it to a simulation of the field distribution, we obtain the probability at which location and at which interface the defect resides. This method is applicable to already existing samples of various qubit types, without further on-chip design changes. It provides a valuable tool for improving the material quality and nano-fabrication procedures towards more coherent quantum circuits.
doi_str_mv 10.1038/s41598-020-59749-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359373106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c884a4d2cf7996fb11803dc84f4ac233e917f053b5f29742c879205e5a39414d3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVISUyaP5BDWegll00ljWStLoU25KNgKJTmLGSt5CisJVvSBvzvI9f5cHPIXDQwz7yalxehM4IvCIbuW2aEy67FFLdcCibbzQGaUMx4S4HSw73-GJ3m_IBrcSoZkUfoGCjuMBV0gn7-sTkOjz4smnJvm1XMvvgYchNd01tnTcmND00eVzaZGPrRlC27HnUo47KZ-5I_o09OD9mePr8n6O766u_lbTv7ffPr8sesNUyw0pquY5r11Dgh5dTNCekw9KZjjmlDAawkwmEOc-5oNURNJyTF3HIN9WrWwwn6vtNdjfOl7Y0NJelBrZJf6rRRUXv1_yT4e7WIj0pgAALTKnD-LJDierS5qKXPxg6DDjaOWVGYSpAAglX06zv0IY4pVHuV4hIEELwVpDvKpJhzsu71GILVNiW1S0nVlNS_lNSmLn3Zt_G68pJJBWAH5DoKC5ve_v5A9gla053Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359373106</pqid></control><display><type>article</type><title>Resolving the positions of defects in superconducting quantum bits</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bilmes, Alexander ; Megrant, Anthony ; Klimov, Paul ; Weiss, Georg ; Martinis, John M. ; Ustinov, Alexey V. ; Lisenfeld, Jürgen</creator><creatorcontrib>Bilmes, Alexander ; Megrant, Anthony ; Klimov, Paul ; Weiss, Georg ; Martinis, John M. ; Ustinov, Alexey V. ; Lisenfeld, Jürgen</creatorcontrib><description>Solid-state quantum coherent devices are quickly progressing. Superconducting circuits, for instance, have already been used to demonstrate prototype quantum processors comprising a few tens of quantum bits. This development also revealed that a major part of decoherence and energy loss in such devices originates from a bath of parasitic material defects. However, neither the microscopic structure of defects nor the mechanisms by which they emerge during sample fabrication are understood. Here, we present a technique to obtain information on locations of defects relative to the thin film edge of the qubit circuit. Resonance frequencies of defects are tuned by exposing the qubit sample to electric fields generated by electrodes surrounding the chip. By determining the defect’s coupling strength to each electrode and comparing it to a simulation of the field distribution, we obtain the probability at which location and at which interface the defect resides. This method is applicable to already existing samples of various qubit types, without further on-chip design changes. It provides a valuable tool for improving the material quality and nano-fabrication procedures towards more coherent quantum circuits.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59749-y</identifier><identifier>PMID: 32080272</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; 639/766/930/12 ; Circuits ; Defects ; Electrodes ; Energy loss ; Fabrication ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Thin films</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.3090-3090, Article 3090</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c884a4d2cf7996fb11803dc84f4ac233e917f053b5f29742c879205e5a39414d3</citedby><cites>FETCH-LOGICAL-c474t-c884a4d2cf7996fb11803dc84f4ac233e917f053b5f29742c879205e5a39414d3</cites><orcidid>0000-0001-8605-4373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033136/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033136/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilmes, Alexander</creatorcontrib><creatorcontrib>Megrant, Anthony</creatorcontrib><creatorcontrib>Klimov, Paul</creatorcontrib><creatorcontrib>Weiss, Georg</creatorcontrib><creatorcontrib>Martinis, John M.</creatorcontrib><creatorcontrib>Ustinov, Alexey V.</creatorcontrib><creatorcontrib>Lisenfeld, Jürgen</creatorcontrib><title>Resolving the positions of defects in superconducting quantum bits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Solid-state quantum coherent devices are quickly progressing. Superconducting circuits, for instance, have already been used to demonstrate prototype quantum processors comprising a few tens of quantum bits. This development also revealed that a major part of decoherence and energy loss in such devices originates from a bath of parasitic material defects. However, neither the microscopic structure of defects nor the mechanisms by which they emerge during sample fabrication are understood. Here, we present a technique to obtain information on locations of defects relative to the thin film edge of the qubit circuit. Resonance frequencies of defects are tuned by exposing the qubit sample to electric fields generated by electrodes surrounding the chip. By determining the defect’s coupling strength to each electrode and comparing it to a simulation of the field distribution, we obtain the probability at which location and at which interface the defect resides. This method is applicable to already existing samples of various qubit types, without further on-chip design changes. It provides a valuable tool for improving the material quality and nano-fabrication procedures towards more coherent quantum circuits.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>639/766/930/12</subject><subject>Circuits</subject><subject>Defects</subject><subject>Electrodes</subject><subject>Energy loss</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rGzEQhkVISUyaP5BDWegll00ljWStLoU25KNgKJTmLGSt5CisJVvSBvzvI9f5cHPIXDQwz7yalxehM4IvCIbuW2aEy67FFLdcCibbzQGaUMx4S4HSw73-GJ3m_IBrcSoZkUfoGCjuMBV0gn7-sTkOjz4smnJvm1XMvvgYchNd01tnTcmND00eVzaZGPrRlC27HnUo47KZ-5I_o09OD9mePr8n6O766u_lbTv7ffPr8sesNUyw0pquY5r11Dgh5dTNCekw9KZjjmlDAawkwmEOc-5oNURNJyTF3HIN9WrWwwn6vtNdjfOl7Y0NJelBrZJf6rRRUXv1_yT4e7WIj0pgAALTKnD-LJDierS5qKXPxg6DDjaOWVGYSpAAglX06zv0IY4pVHuV4hIEELwVpDvKpJhzsu71GILVNiW1S0nVlNS_lNSmLn3Zt_G68pJJBWAH5DoKC5ve_v5A9gla053Y</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Bilmes, Alexander</creator><creator>Megrant, Anthony</creator><creator>Klimov, Paul</creator><creator>Weiss, Georg</creator><creator>Martinis, John M.</creator><creator>Ustinov, Alexey V.</creator><creator>Lisenfeld, Jürgen</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8605-4373</orcidid></search><sort><creationdate>20200220</creationdate><title>Resolving the positions of defects in superconducting quantum bits</title><author>Bilmes, Alexander ; Megrant, Anthony ; Klimov, Paul ; Weiss, Georg ; Martinis, John M. ; Ustinov, Alexey V. ; Lisenfeld, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c884a4d2cf7996fb11803dc84f4ac233e917f053b5f29742c879205e5a39414d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>639/766/930/12</topic><topic>Circuits</topic><topic>Defects</topic><topic>Electrodes</topic><topic>Energy loss</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilmes, Alexander</creatorcontrib><creatorcontrib>Megrant, Anthony</creatorcontrib><creatorcontrib>Klimov, Paul</creatorcontrib><creatorcontrib>Weiss, Georg</creatorcontrib><creatorcontrib>Martinis, John M.</creatorcontrib><creatorcontrib>Ustinov, Alexey V.</creatorcontrib><creatorcontrib>Lisenfeld, Jürgen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilmes, Alexander</au><au>Megrant, Anthony</au><au>Klimov, Paul</au><au>Weiss, Georg</au><au>Martinis, John M.</au><au>Ustinov, Alexey V.</au><au>Lisenfeld, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the positions of defects in superconducting quantum bits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3090</spage><epage>3090</epage><pages>3090-3090</pages><artnum>3090</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Solid-state quantum coherent devices are quickly progressing. Superconducting circuits, for instance, have already been used to demonstrate prototype quantum processors comprising a few tens of quantum bits. This development also revealed that a major part of decoherence and energy loss in such devices originates from a bath of parasitic material defects. However, neither the microscopic structure of defects nor the mechanisms by which they emerge during sample fabrication are understood. Here, we present a technique to obtain information on locations of defects relative to the thin film edge of the qubit circuit. Resonance frequencies of defects are tuned by exposing the qubit sample to electric fields generated by electrodes surrounding the chip. By determining the defect’s coupling strength to each electrode and comparing it to a simulation of the field distribution, we obtain the probability at which location and at which interface the defect resides. This method is applicable to already existing samples of various qubit types, without further on-chip design changes. It provides a valuable tool for improving the material quality and nano-fabrication procedures towards more coherent quantum circuits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32080272</pmid><doi>10.1038/s41598-020-59749-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8605-4373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-02, Vol.10 (1), p.3090-3090, Article 3090
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033136
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/766/483/2802
639/766/483/481
639/766/930/12
Circuits
Defects
Electrodes
Energy loss
Fabrication
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Thin films
title Resolving the positions of defects in superconducting quantum bits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20positions%20of%20defects%20in%20superconducting%20quantum%20bits&rft.jtitle=Scientific%20reports&rft.au=Bilmes,%20Alexander&rft.date=2020-02-20&rft.volume=10&rft.issue=1&rft.spage=3090&rft.epage=3090&rft.pages=3090-3090&rft.artnum=3090&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59749-y&rft_dat=%3Cproquest_pubme%3E2359373106%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359373106&rft_id=info:pmid/32080272&rfr_iscdi=true