Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties
Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multi...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2020-02, Vol.9 (4), p.e1901399-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e1901399 |
container_title | Advanced healthcare materials |
container_volume | 9 |
creator | Chang, Chia‐Wen Seibel, Alex J. Avendano, Alex Cortes‐Medina, Marcos G. Song, Jonathan W. |
description | Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well‐characterized for molecular‐binding and mechanical properties to reconstitute vessel‐like analogues in vitro. This study focuses on three distinct isoforms of the pro‐metastatic chemokine CXCL12. In collagen‐only hydrogel, CXCL12‐α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12‐β and CXCL12‐γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12‐γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12‐γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform‐specific responses toward directing angiogenesis.
Using 3D microfluidics, this study reveals that matrix‐binding properties of different isoforms of the pro‐metastatic chemokine CXCL12 underlie isoform specific‐differences in angiogenesis. The addition of hyaluronic acid into collagen‐based hydrogels preferentially augments the potency of the CXCL12‐γ isoform. |
doi_str_mv | 10.1002/adhm.201901399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339790713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-29c4a810dfb2d1912585fe20cea7b8e61b4494cc0f05d11b7bb893b2a268bae73</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rLu1aMEvHiZMZV0ujsXYZhVd2HEBVfxFpJ09UyW7mRMupX593Yz6_hxsS5VkKceUryEPAe2BMb4a9Ps-iVnoBgIpR6Rcw6KL3gp1ePTXLAzcpnzPZuqlFDW8JScCVBFIRWck-7K58GH7ejzbmr00x6db72j66_rDXB6k2MbU59pDPRuhz7RVdj6uMWA2WdqQkO_mOzGziR6i6lHY33nhwO9TbGPs3me9pgGj_kZedKaLuPlQ78gn9-9vVtfLzYf39-sV5uFk0yqBVeuMDWwprW8AQVc1rJFzhyaytZYgi0KVTjHWiYbAFtZWythueFlbQ1W4oK8OXr3o-2xcRiGZDq9T7436aCj8frvl-B3ehu_64oJwWAWvHoQpPhtxDzo3meHXWcCxjFrLoSqFKtATOjLf9D7OKYwnTdRsuIlQCEnanmkXIo5J2xPnwGm5yz1nKU-ZTktvPjzhBP-K7kJUEfgh-_w8B-dXl1df_gt_wmXb6yl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357261145</pqid></control><display><type>article</type><title>Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Chia‐Wen ; Seibel, Alex J. ; Avendano, Alex ; Cortes‐Medina, Marcos G. ; Song, Jonathan W.</creator><creatorcontrib>Chang, Chia‐Wen ; Seibel, Alex J. ; Avendano, Alex ; Cortes‐Medina, Marcos G. ; Song, Jonathan W.</creatorcontrib><description>Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well‐characterized for molecular‐binding and mechanical properties to reconstitute vessel‐like analogues in vitro. This study focuses on three distinct isoforms of the pro‐metastatic chemokine CXCL12. In collagen‐only hydrogel, CXCL12‐α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12‐β and CXCL12‐γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12‐γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12‐γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform‐specific responses toward directing angiogenesis.
Using 3D microfluidics, this study reveals that matrix‐binding properties of different isoforms of the pro‐metastatic chemokine CXCL12 underlie isoform specific‐differences in angiogenesis. The addition of hyaluronic acid into collagen‐based hydrogels preferentially augments the potency of the CXCL12‐γ isoform.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201901399</identifier><identifier>PMID: 31944591</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; Binding ; Blood vessels ; Capillary Permeability ; CD44 antigen ; chemokine ; Chemokine CXCL12 ; Chemokines ; Collagen ; CXCL12 protein ; Extracellular Matrix ; Glycosaminoglycans ; Humans ; Hyaluronic Acid ; Hydrogels ; Isoforms ; matrix‐bound ligands ; Mechanical properties ; Metastases ; Microfluidics ; microvessel analogues ; Permeability ; Protein Isoforms ; vascular function</subject><ispartof>Advanced healthcare materials, 2020-02, Vol.9 (4), p.e1901399-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-29c4a810dfb2d1912585fe20cea7b8e61b4494cc0f05d11b7bb893b2a268bae73</citedby><cites>FETCH-LOGICAL-c5059-29c4a810dfb2d1912585fe20cea7b8e61b4494cc0f05d11b7bb893b2a268bae73</cites><orcidid>0000-0003-0528-8392 ; 0000-0002-0810-8556 ; 0000-0002-6991-5298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201901399$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201901399$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31944591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Chia‐Wen</creatorcontrib><creatorcontrib>Seibel, Alex J.</creatorcontrib><creatorcontrib>Avendano, Alex</creatorcontrib><creatorcontrib>Cortes‐Medina, Marcos G.</creatorcontrib><creatorcontrib>Song, Jonathan W.</creatorcontrib><title>Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well‐characterized for molecular‐binding and mechanical properties to reconstitute vessel‐like analogues in vitro. This study focuses on three distinct isoforms of the pro‐metastatic chemokine CXCL12. In collagen‐only hydrogel, CXCL12‐α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12‐β and CXCL12‐γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12‐γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12‐γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform‐specific responses toward directing angiogenesis.
Using 3D microfluidics, this study reveals that matrix‐binding properties of different isoforms of the pro‐metastatic chemokine CXCL12 underlie isoform specific‐differences in angiogenesis. The addition of hyaluronic acid into collagen‐based hydrogels preferentially augments the potency of the CXCL12‐γ isoform.</description><subject>Angiogenesis</subject><subject>Binding</subject><subject>Blood vessels</subject><subject>Capillary Permeability</subject><subject>CD44 antigen</subject><subject>chemokine</subject><subject>Chemokine CXCL12</subject><subject>Chemokines</subject><subject>Collagen</subject><subject>CXCL12 protein</subject><subject>Extracellular Matrix</subject><subject>Glycosaminoglycans</subject><subject>Humans</subject><subject>Hyaluronic Acid</subject><subject>Hydrogels</subject><subject>Isoforms</subject><subject>matrix‐bound ligands</subject><subject>Mechanical properties</subject><subject>Metastases</subject><subject>Microfluidics</subject><subject>microvessel analogues</subject><subject>Permeability</subject><subject>Protein Isoforms</subject><subject>vascular function</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7rLu1aMEvHiZMZV0ujsXYZhVd2HEBVfxFpJ09UyW7mRMupX593Yz6_hxsS5VkKceUryEPAe2BMb4a9Ps-iVnoBgIpR6Rcw6KL3gp1ePTXLAzcpnzPZuqlFDW8JScCVBFIRWck-7K58GH7ejzbmr00x6db72j66_rDXB6k2MbU59pDPRuhz7RVdj6uMWA2WdqQkO_mOzGziR6i6lHY33nhwO9TbGPs3me9pgGj_kZedKaLuPlQ78gn9-9vVtfLzYf39-sV5uFk0yqBVeuMDWwprW8AQVc1rJFzhyaytZYgi0KVTjHWiYbAFtZWythueFlbQ1W4oK8OXr3o-2xcRiGZDq9T7436aCj8frvl-B3ehu_64oJwWAWvHoQpPhtxDzo3meHXWcCxjFrLoSqFKtATOjLf9D7OKYwnTdRsuIlQCEnanmkXIo5J2xPnwGm5yz1nKU-ZTktvPjzhBP-K7kJUEfgh-_w8B-dXl1df_gt_wmXb6yl</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chang, Chia‐Wen</creator><creator>Seibel, Alex J.</creator><creator>Avendano, Alex</creator><creator>Cortes‐Medina, Marcos G.</creator><creator>Song, Jonathan W.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0528-8392</orcidid><orcidid>https://orcid.org/0000-0002-0810-8556</orcidid><orcidid>https://orcid.org/0000-0002-6991-5298</orcidid></search><sort><creationdate>20200201</creationdate><title>Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties</title><author>Chang, Chia‐Wen ; Seibel, Alex J. ; Avendano, Alex ; Cortes‐Medina, Marcos G. ; Song, Jonathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-29c4a810dfb2d1912585fe20cea7b8e61b4494cc0f05d11b7bb893b2a268bae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Binding</topic><topic>Blood vessels</topic><topic>Capillary Permeability</topic><topic>CD44 antigen</topic><topic>chemokine</topic><topic>Chemokine CXCL12</topic><topic>Chemokines</topic><topic>Collagen</topic><topic>CXCL12 protein</topic><topic>Extracellular Matrix</topic><topic>Glycosaminoglycans</topic><topic>Humans</topic><topic>Hyaluronic Acid</topic><topic>Hydrogels</topic><topic>Isoforms</topic><topic>matrix‐bound ligands</topic><topic>Mechanical properties</topic><topic>Metastases</topic><topic>Microfluidics</topic><topic>microvessel analogues</topic><topic>Permeability</topic><topic>Protein Isoforms</topic><topic>vascular function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chia‐Wen</creatorcontrib><creatorcontrib>Seibel, Alex J.</creatorcontrib><creatorcontrib>Avendano, Alex</creatorcontrib><creatorcontrib>Cortes‐Medina, Marcos G.</creatorcontrib><creatorcontrib>Song, Jonathan W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chia‐Wen</au><au>Seibel, Alex J.</au><au>Avendano, Alex</au><au>Cortes‐Medina, Marcos G.</au><au>Song, Jonathan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>9</volume><issue>4</issue><spage>e1901399</spage><epage>n/a</epage><pages>e1901399-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well‐characterized for molecular‐binding and mechanical properties to reconstitute vessel‐like analogues in vitro. This study focuses on three distinct isoforms of the pro‐metastatic chemokine CXCL12. In collagen‐only hydrogel, CXCL12‐α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12‐β and CXCL12‐γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12‐γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12‐γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform‐specific responses toward directing angiogenesis.
Using 3D microfluidics, this study reveals that matrix‐binding properties of different isoforms of the pro‐metastatic chemokine CXCL12 underlie isoform specific‐differences in angiogenesis. The addition of hyaluronic acid into collagen‐based hydrogels preferentially augments the potency of the CXCL12‐γ isoform.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31944591</pmid><doi>10.1002/adhm.201901399</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0528-8392</orcidid><orcidid>https://orcid.org/0000-0002-0810-8556</orcidid><orcidid>https://orcid.org/0000-0002-6991-5298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2020-02, Vol.9 (4), p.e1901399-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033017 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Angiogenesis Binding Blood vessels Capillary Permeability CD44 antigen chemokine Chemokine CXCL12 Chemokines Collagen CXCL12 protein Extracellular Matrix Glycosaminoglycans Humans Hyaluronic Acid Hydrogels Isoforms matrix‐bound ligands Mechanical properties Metastases Microfluidics microvessel analogues Permeability Protein Isoforms vascular function |
title | Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20Specific%20CXCL12%20Isoforms%20on%20Their%20Angiogenesis%20and%20Vascular%20Permeability%20Promoting%20Properties&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Chang,%20Chia%E2%80%90Wen&rft.date=2020-02-01&rft.volume=9&rft.issue=4&rft.spage=e1901399&rft.epage=n/a&rft.pages=e1901399-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201901399&rft_dat=%3Cproquest_pubme%3E2339790713%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357261145&rft_id=info:pmid/31944591&rfr_iscdi=true |