Automatic Facial Paralysis Assessment via Computational Image Analysis

Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Wang, Ling, Tong, Jing, Wei, Mingqiang, Zhong, Weizheng, Wu, Jianhuang, Jiang, Chaoqun, Yu, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title Journal of healthcare engineering
container_volume 2020
creator Wang, Ling
Tong, Jing
Wei, Mingqiang
Zhong, Weizheng
Wu, Jianhuang
Jiang, Chaoqun
Yu, Haibo
description Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.
doi_str_mv 10.1155/2020/2398542
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7031725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621579677</galeid><sourcerecordid>A621579677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</originalsourceid><addsrcrecordid>eNqN0U1L7DAUBuAgioq6cy0FN4J3NDlJmnYjlOHOVRB0oeuQpqdjpG3GplX89zdDx6-d2SRwHl7ecAg5ZvSCMSkvgQK9BJ5nUsAW2Qcq6Aw4zbc_3pDLPXIUwjONh-dcML5L9jjQLM8Y7JNFMQ6-NYOzycJYZ5rk3vSmeQ8uJEUIGEKL3ZC8OpPMfbsah0h9F9lNa5aYFN1kD8lObZqAR5v7gDwu_j7Mr2e3d_9u5sXtzArFhhnHCtZdUQqaMS4VLZUskaYpUylUSliUZUnLqswEV6XidWUr4CDzOAM0_IBcTbmrsWyxsrFbbKtXvWtN_669cfrnpHNPeulftaKcKZAx4GwT0PuXEcOgWxcsNo3p0I9BA085zQSkWaSnE12aBrXrah8T7ZrrIgUmVZ4qFdWfSdneh9Bj_VmGUb3ekV7vSG92FPnJ9w984o-NRHA-gSfXVebN_TIOo8HafGmWpQCC_wdKvaHC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363084268</pqid></control><display><type>article</type><title>Automatic Facial Paralysis Assessment via Computational Image Analysis</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Ling ; Tong, Jing ; Wei, Mingqiang ; Zhong, Weizheng ; Wu, Jianhuang ; Jiang, Chaoqun ; Yu, Haibo</creator><contributor>Lindén, Maria</contributor><creatorcontrib>Wang, Ling ; Tong, Jing ; Wei, Mingqiang ; Zhong, Weizheng ; Wu, Jianhuang ; Jiang, Chaoqun ; Yu, Haibo ; Lindén, Maria</creatorcontrib><description>Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2020/2398542</identifier><identifier>PMID: 32089812</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Diagnosis ; Face - blood supply ; Face - innervation ; Facial Paralysis - diagnostic imaging ; Facial Paralysis - physiopathology ; Humans ; Image Processing, Computer-Assisted ; Paralysis, Facial</subject><ispartof>Journal of healthcare engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Chaoqun Jiang et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Chaoqun Jiang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</citedby><cites>FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</cites><orcidid>0000-0001-5188-2021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32089812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lindén, Maria</contributor><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Tong, Jing</creatorcontrib><creatorcontrib>Wei, Mingqiang</creatorcontrib><creatorcontrib>Zhong, Weizheng</creatorcontrib><creatorcontrib>Wu, Jianhuang</creatorcontrib><creatorcontrib>Jiang, Chaoqun</creatorcontrib><creatorcontrib>Yu, Haibo</creatorcontrib><title>Automatic Facial Paralysis Assessment via Computational Image Analysis</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.</description><subject>Diagnosis</subject><subject>Face - blood supply</subject><subject>Face - innervation</subject><subject>Facial Paralysis - diagnostic imaging</subject><subject>Facial Paralysis - physiopathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Paralysis, Facial</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0U1L7DAUBuAgioq6cy0FN4J3NDlJmnYjlOHOVRB0oeuQpqdjpG3GplX89zdDx6-d2SRwHl7ecAg5ZvSCMSkvgQK9BJ5nUsAW2Qcq6Aw4zbc_3pDLPXIUwjONh-dcML5L9jjQLM8Y7JNFMQ6-NYOzycJYZ5rk3vSmeQ8uJEUIGEKL3ZC8OpPMfbsah0h9F9lNa5aYFN1kD8lObZqAR5v7gDwu_j7Mr2e3d_9u5sXtzArFhhnHCtZdUQqaMS4VLZUskaYpUylUSliUZUnLqswEV6XidWUr4CDzOAM0_IBcTbmrsWyxsrFbbKtXvWtN_669cfrnpHNPeulftaKcKZAx4GwT0PuXEcOgWxcsNo3p0I9BA085zQSkWaSnE12aBrXrah8T7ZrrIgUmVZ4qFdWfSdneh9Bj_VmGUb3ekV7vSG92FPnJ9w984o-NRHA-gSfXVebN_TIOo8HafGmWpQCC_wdKvaHC</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Ling</creator><creator>Tong, Jing</creator><creator>Wei, Mingqiang</creator><creator>Zhong, Weizheng</creator><creator>Wu, Jianhuang</creator><creator>Jiang, Chaoqun</creator><creator>Yu, Haibo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5188-2021</orcidid></search><sort><creationdate>2020</creationdate><title>Automatic Facial Paralysis Assessment via Computational Image Analysis</title><author>Wang, Ling ; Tong, Jing ; Wei, Mingqiang ; Zhong, Weizheng ; Wu, Jianhuang ; Jiang, Chaoqun ; Yu, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diagnosis</topic><topic>Face - blood supply</topic><topic>Face - innervation</topic><topic>Facial Paralysis - diagnostic imaging</topic><topic>Facial Paralysis - physiopathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Paralysis, Facial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Tong, Jing</creatorcontrib><creatorcontrib>Wei, Mingqiang</creatorcontrib><creatorcontrib>Zhong, Weizheng</creatorcontrib><creatorcontrib>Wu, Jianhuang</creatorcontrib><creatorcontrib>Jiang, Chaoqun</creatorcontrib><creatorcontrib>Yu, Haibo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ling</au><au>Tong, Jing</au><au>Wei, Mingqiang</au><au>Zhong, Weizheng</au><au>Wu, Jianhuang</au><au>Jiang, Chaoqun</au><au>Yu, Haibo</au><au>Lindén, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Facial Paralysis Assessment via Computational Image Analysis</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32089812</pmid><doi>10.1155/2020/2398542</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5188-2021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2295
ispartof Journal of healthcare engineering, 2020, Vol.2020 (2020), p.1-10
issn 2040-2295
2040-2309
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7031725
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Diagnosis
Face - blood supply
Face - innervation
Facial Paralysis - diagnostic imaging
Facial Paralysis - physiopathology
Humans
Image Processing, Computer-Assisted
Paralysis, Facial
title Automatic Facial Paralysis Assessment via Computational Image Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Facial%20Paralysis%20Assessment%20via%20Computational%20Image%20Analysis&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Wang,%20Ling&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2020/2398542&rft_dat=%3Cgale_pubme%3EA621579677%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363084268&rft_id=info:pmid/32089812&rft_galeid=A621579677&rfr_iscdi=true