Automatic Facial Paralysis Assessment via Computational Image Analysis
Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an eff...
Gespeichert in:
Veröffentlicht in: | Journal of healthcare engineering 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of healthcare engineering |
container_volume | 2020 |
creator | Wang, Ling Tong, Jing Wei, Mingqiang Zhong, Weizheng Wu, Jianhuang Jiang, Chaoqun Yu, Haibo |
description | Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician. |
doi_str_mv | 10.1155/2020/2398542 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7031725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621579677</galeid><sourcerecordid>A621579677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</originalsourceid><addsrcrecordid>eNqN0U1L7DAUBuAgioq6cy0FN4J3NDlJmnYjlOHOVRB0oeuQpqdjpG3GplX89zdDx6-d2SRwHl7ecAg5ZvSCMSkvgQK9BJ5nUsAW2Qcq6Aw4zbc_3pDLPXIUwjONh-dcML5L9jjQLM8Y7JNFMQ6-NYOzycJYZ5rk3vSmeQ8uJEUIGEKL3ZC8OpPMfbsah0h9F9lNa5aYFN1kD8lObZqAR5v7gDwu_j7Mr2e3d_9u5sXtzArFhhnHCtZdUQqaMS4VLZUskaYpUylUSliUZUnLqswEV6XidWUr4CDzOAM0_IBcTbmrsWyxsrFbbKtXvWtN_669cfrnpHNPeulftaKcKZAx4GwT0PuXEcOgWxcsNo3p0I9BA085zQSkWaSnE12aBrXrah8T7ZrrIgUmVZ4qFdWfSdneh9Bj_VmGUb3ekV7vSG92FPnJ9w984o-NRHA-gSfXVebN_TIOo8HafGmWpQCC_wdKvaHC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363084268</pqid></control><display><type>article</type><title>Automatic Facial Paralysis Assessment via Computational Image Analysis</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Ling ; Tong, Jing ; Wei, Mingqiang ; Zhong, Weizheng ; Wu, Jianhuang ; Jiang, Chaoqun ; Yu, Haibo</creator><contributor>Lindén, Maria</contributor><creatorcontrib>Wang, Ling ; Tong, Jing ; Wei, Mingqiang ; Zhong, Weizheng ; Wu, Jianhuang ; Jiang, Chaoqun ; Yu, Haibo ; Lindén, Maria</creatorcontrib><description>Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2020/2398542</identifier><identifier>PMID: 32089812</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Diagnosis ; Face - blood supply ; Face - innervation ; Facial Paralysis - diagnostic imaging ; Facial Paralysis - physiopathology ; Humans ; Image Processing, Computer-Assisted ; Paralysis, Facial</subject><ispartof>Journal of healthcare engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Chaoqun Jiang et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Chaoqun Jiang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</citedby><cites>FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</cites><orcidid>0000-0001-5188-2021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32089812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lindén, Maria</contributor><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Tong, Jing</creatorcontrib><creatorcontrib>Wei, Mingqiang</creatorcontrib><creatorcontrib>Zhong, Weizheng</creatorcontrib><creatorcontrib>Wu, Jianhuang</creatorcontrib><creatorcontrib>Jiang, Chaoqun</creatorcontrib><creatorcontrib>Yu, Haibo</creatorcontrib><title>Automatic Facial Paralysis Assessment via Computational Image Analysis</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.</description><subject>Diagnosis</subject><subject>Face - blood supply</subject><subject>Face - innervation</subject><subject>Facial Paralysis - diagnostic imaging</subject><subject>Facial Paralysis - physiopathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Paralysis, Facial</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0U1L7DAUBuAgioq6cy0FN4J3NDlJmnYjlOHOVRB0oeuQpqdjpG3GplX89zdDx6-d2SRwHl7ecAg5ZvSCMSkvgQK9BJ5nUsAW2Qcq6Aw4zbc_3pDLPXIUwjONh-dcML5L9jjQLM8Y7JNFMQ6-NYOzycJYZ5rk3vSmeQ8uJEUIGEKL3ZC8OpPMfbsah0h9F9lNa5aYFN1kD8lObZqAR5v7gDwu_j7Mr2e3d_9u5sXtzArFhhnHCtZdUQqaMS4VLZUskaYpUylUSliUZUnLqswEV6XidWUr4CDzOAM0_IBcTbmrsWyxsrFbbKtXvWtN_669cfrnpHNPeulftaKcKZAx4GwT0PuXEcOgWxcsNo3p0I9BA085zQSkWaSnE12aBrXrah8T7ZrrIgUmVZ4qFdWfSdneh9Bj_VmGUb3ekV7vSG92FPnJ9w984o-NRHA-gSfXVebN_TIOo8HafGmWpQCC_wdKvaHC</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Ling</creator><creator>Tong, Jing</creator><creator>Wei, Mingqiang</creator><creator>Zhong, Weizheng</creator><creator>Wu, Jianhuang</creator><creator>Jiang, Chaoqun</creator><creator>Yu, Haibo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5188-2021</orcidid></search><sort><creationdate>2020</creationdate><title>Automatic Facial Paralysis Assessment via Computational Image Analysis</title><author>Wang, Ling ; Tong, Jing ; Wei, Mingqiang ; Zhong, Weizheng ; Wu, Jianhuang ; Jiang, Chaoqun ; Yu, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-3ed29854e540813570b75be0661762d74ce5bb0bdb8437b73fdcd23259d742ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diagnosis</topic><topic>Face - blood supply</topic><topic>Face - innervation</topic><topic>Facial Paralysis - diagnostic imaging</topic><topic>Facial Paralysis - physiopathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Paralysis, Facial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Tong, Jing</creatorcontrib><creatorcontrib>Wei, Mingqiang</creatorcontrib><creatorcontrib>Zhong, Weizheng</creatorcontrib><creatorcontrib>Wu, Jianhuang</creatorcontrib><creatorcontrib>Jiang, Chaoqun</creatorcontrib><creatorcontrib>Yu, Haibo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ling</au><au>Tong, Jing</au><au>Wei, Mingqiang</au><au>Zhong, Weizheng</au><au>Wu, Jianhuang</au><au>Jiang, Chaoqun</au><au>Yu, Haibo</au><au>Lindén, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Facial Paralysis Assessment via Computational Image Analysis</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House–Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32089812</pmid><doi>10.1155/2020/2398542</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5188-2021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-2295 |
ispartof | Journal of healthcare engineering, 2020, Vol.2020 (2020), p.1-10 |
issn | 2040-2295 2040-2309 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7031725 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Diagnosis Face - blood supply Face - innervation Facial Paralysis - diagnostic imaging Facial Paralysis - physiopathology Humans Image Processing, Computer-Assisted Paralysis, Facial |
title | Automatic Facial Paralysis Assessment via Computational Image Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Facial%20Paralysis%20Assessment%20via%20Computational%20Image%20Analysis&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Wang,%20Ling&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2020/2398542&rft_dat=%3Cgale_pubme%3EA621579677%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363084268&rft_id=info:pmid/32089812&rft_galeid=A621579677&rfr_iscdi=true |