Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo

Ameliorating bone loss caused by mechanical unloading is a substantial clinical challenge, and the role of noncoding RNAs in this process has attracted increasing attention. In this study, we found that the long noncoding RNA osteoblast differentiation-related lncRNA under simulated microgravity (ln...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2020-02, Vol.11 (2), p.133-133, Article 133
Hauptverfasser: Wang, Yixuan, Wang, Ke, Zhang, Lijun, Tan, Yingjun, Hu, Zebing, Dang, Lei, Zhou, Hua, Li, Gaozhi, Wang, Han, Zhang, Shu, Shi, Fei, Cao, Xinsheng, Zhang, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 2
container_start_page 133
container_title Cell death & disease
container_volume 11
creator Wang, Yixuan
Wang, Ke
Zhang, Lijun
Tan, Yingjun
Hu, Zebing
Dang, Lei
Zhou, Hua
Li, Gaozhi
Wang, Han
Zhang, Shu
Shi, Fei
Cao, Xinsheng
Zhang, Ge
description Ameliorating bone loss caused by mechanical unloading is a substantial clinical challenge, and the role of noncoding RNAs in this process has attracted increasing attention. In this study, we found that the long noncoding RNA osteoblast differentiation-related lncRNA under simulated microgravity (lncRNA ODSM) could inhibit osteoblast apoptosis and promote osteoblast mineralization in vitro. The increased expression level of the lncRNA ODSM partially reduced apoptosis and promoted differentiation in MC3T3-E1 cells under microgravity unloading conditions, and the effect was partially dependent on miR-139-3p. LncRNA ODSM supplementation in hindlimb-unloaded mice caused a decrease in the number of apoptotic cells in bone tissue and an increase in osteoblast activity. Furthermore, targeted overexpression of the lncRNA ODSM in osteoblasts partially reversed bone loss induced by mechanical unloading at the microstructural and biomechanical levels. These findings are the first to suggest the potential value of the lncRNA ODSM in osteoporosis therapy and the treatment of pathological osteopenia.
doi_str_mv 10.1038/s41419-020-2325-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7028725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357413515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c9b4901b48decd893a39ca062cc64c51a306e2db213d2b0244bb84ceca7be7303</originalsourceid><addsrcrecordid>eNp1kUtv1TAQhS1ERau2P4ANssSGTWD8SJxskKrylFoqQVlbtjM3TZVrX2znCv49jlJKi4S98FjznWOPDiHPGbxmINo3STLJugo4VFzwuhJPyBEHySrZtt3TB_UhOU3pFsoSAnjdPCOHgoNiAtQRma5NHDBjT8MeI_7cRUxpDJ6GDc03SKfgB-qDd6EfS_X1yxm9evftkjrjacRhnkxGGlLGYCeTMt3M3uVFP3q6H3MM1Ph-vezDCTnYmCnh6d15TL5_eH99_qm6uPr4-fzsonJSQa5cZ2UHzMq2R9e3nTCicwYa7lwjXc2MgAZ5bzkTPbfApbS2lQ6dURaVAHFM3q6-u9lusXfoczST3sVxa-IvHcyoH3f8eKOHsNcKeKt4XQxe3RnE8GPGlPV2TA6nyXgMc9Jc1G3ZCpqCvvwHvQ1z9GW8hVKSiZothmylXAwpRdzcf4aBXuLUa5y6xKmXOLUomhcPp7hX_AmvAHwFUmn5AePfp__v-hvsm6vM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357413515</pqid></control><display><type>article</type><title>Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Wang, Yixuan ; Wang, Ke ; Zhang, Lijun ; Tan, Yingjun ; Hu, Zebing ; Dang, Lei ; Zhou, Hua ; Li, Gaozhi ; Wang, Han ; Zhang, Shu ; Shi, Fei ; Cao, Xinsheng ; Zhang, Ge</creator><creatorcontrib>Wang, Yixuan ; Wang, Ke ; Zhang, Lijun ; Tan, Yingjun ; Hu, Zebing ; Dang, Lei ; Zhou, Hua ; Li, Gaozhi ; Wang, Han ; Zhang, Shu ; Shi, Fei ; Cao, Xinsheng ; Zhang, Ge</creatorcontrib><description>Ameliorating bone loss caused by mechanical unloading is a substantial clinical challenge, and the role of noncoding RNAs in this process has attracted increasing attention. In this study, we found that the long noncoding RNA osteoblast differentiation-related lncRNA under simulated microgravity (lncRNA ODSM) could inhibit osteoblast apoptosis and promote osteoblast mineralization in vitro. The increased expression level of the lncRNA ODSM partially reduced apoptosis and promoted differentiation in MC3T3-E1 cells under microgravity unloading conditions, and the effect was partially dependent on miR-139-3p. LncRNA ODSM supplementation in hindlimb-unloaded mice caused a decrease in the number of apoptotic cells in bone tissue and an increase in osteoblast activity. Furthermore, targeted overexpression of the lncRNA ODSM in osteoblasts partially reversed bone loss induced by mechanical unloading at the microstructural and biomechanical levels. These findings are the first to suggest the potential value of the lncRNA ODSM in osteoporosis therapy and the treatment of pathological osteopenia.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-020-2325-3</identifier><identifier>PMID: 32071307</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/2 ; 13/31 ; 13/89 ; 38/61 ; 38/77 ; 3T3 Cells ; 631/337 ; 64/60 ; 692/699 ; Animals ; Antibodies ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Bone loss ; Cell Biology ; Cell Culture ; Cell Differentiation ; Disease Models, Animal ; ets-Domain Protein Elk-1 - genetics ; ets-Domain Protein Elk-1 - metabolism ; Gene Targeting ; Hindlimb Suspension ; Immunology ; Life Sciences ; Male ; Mechanical unloading ; Mice ; Mice, Inbred C57BL ; Microgravity ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Mineralization ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Osteogenesis ; Osteopenia ; Osteoporosis ; Osteoporosis - genetics ; Osteoporosis - metabolism ; Osteoporosis - pathology ; Osteoporosis - prevention &amp; control ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Signal Transduction ; Supplements ; Up-Regulation ; Weightlessness Simulation</subject><ispartof>Cell death &amp; disease, 2020-02, Vol.11 (2), p.133-133, Article 133</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c9b4901b48decd893a39ca062cc64c51a306e2db213d2b0244bb84ceca7be7303</citedby><cites>FETCH-LOGICAL-c470t-c9b4901b48decd893a39ca062cc64c51a306e2db213d2b0244bb84ceca7be7303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32071307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Tan, Yingjun</creatorcontrib><creatorcontrib>Hu, Zebing</creatorcontrib><creatorcontrib>Dang, Lei</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Li, Gaozhi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Shi, Fei</creatorcontrib><creatorcontrib>Cao, Xinsheng</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><title>Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Ameliorating bone loss caused by mechanical unloading is a substantial clinical challenge, and the role of noncoding RNAs in this process has attracted increasing attention. In this study, we found that the long noncoding RNA osteoblast differentiation-related lncRNA under simulated microgravity (lncRNA ODSM) could inhibit osteoblast apoptosis and promote osteoblast mineralization in vitro. The increased expression level of the lncRNA ODSM partially reduced apoptosis and promoted differentiation in MC3T3-E1 cells under microgravity unloading conditions, and the effect was partially dependent on miR-139-3p. LncRNA ODSM supplementation in hindlimb-unloaded mice caused a decrease in the number of apoptotic cells in bone tissue and an increase in osteoblast activity. Furthermore, targeted overexpression of the lncRNA ODSM in osteoblasts partially reversed bone loss induced by mechanical unloading at the microstructural and biomechanical levels. These findings are the first to suggest the potential value of the lncRNA ODSM in osteoporosis therapy and the treatment of pathological osteopenia.</description><subject>13/1</subject><subject>13/109</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>38/61</subject><subject>38/77</subject><subject>3T3 Cells</subject><subject>631/337</subject><subject>64/60</subject><subject>692/699</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bone loss</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Differentiation</subject><subject>Disease Models, Animal</subject><subject>ets-Domain Protein Elk-1 - genetics</subject><subject>ets-Domain Protein Elk-1 - metabolism</subject><subject>Gene Targeting</subject><subject>Hindlimb Suspension</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mechanical unloading</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microgravity</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Mineralization</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Osteogenesis</subject><subject>Osteopenia</subject><subject>Osteoporosis</subject><subject>Osteoporosis - genetics</subject><subject>Osteoporosis - metabolism</subject><subject>Osteoporosis - pathology</subject><subject>Osteoporosis - prevention &amp; control</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Signal Transduction</subject><subject>Supplements</subject><subject>Up-Regulation</subject><subject>Weightlessness Simulation</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv1TAQhS1ERau2P4ANssSGTWD8SJxskKrylFoqQVlbtjM3TZVrX2znCv49jlJKi4S98FjznWOPDiHPGbxmINo3STLJugo4VFzwuhJPyBEHySrZtt3TB_UhOU3pFsoSAnjdPCOHgoNiAtQRma5NHDBjT8MeI_7cRUxpDJ6GDc03SKfgB-qDd6EfS_X1yxm9evftkjrjacRhnkxGGlLGYCeTMt3M3uVFP3q6H3MM1Ph-vezDCTnYmCnh6d15TL5_eH99_qm6uPr4-fzsonJSQa5cZ2UHzMq2R9e3nTCicwYa7lwjXc2MgAZ5bzkTPbfApbS2lQ6dURaVAHFM3q6-u9lusXfoczST3sVxa-IvHcyoH3f8eKOHsNcKeKt4XQxe3RnE8GPGlPV2TA6nyXgMc9Jc1G3ZCpqCvvwHvQ1z9GW8hVKSiZothmylXAwpRdzcf4aBXuLUa5y6xKmXOLUomhcPp7hX_AmvAHwFUmn5AePfp__v-hvsm6vM</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Wang, Yixuan</creator><creator>Wang, Ke</creator><creator>Zhang, Lijun</creator><creator>Tan, Yingjun</creator><creator>Hu, Zebing</creator><creator>Dang, Lei</creator><creator>Zhou, Hua</creator><creator>Li, Gaozhi</creator><creator>Wang, Han</creator><creator>Zhang, Shu</creator><creator>Shi, Fei</creator><creator>Cao, Xinsheng</creator><creator>Zhang, Ge</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200218</creationdate><title>Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo</title><author>Wang, Yixuan ; Wang, Ke ; Zhang, Lijun ; Tan, Yingjun ; Hu, Zebing ; Dang, Lei ; Zhou, Hua ; Li, Gaozhi ; Wang, Han ; Zhang, Shu ; Shi, Fei ; Cao, Xinsheng ; Zhang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c9b4901b48decd893a39ca062cc64c51a306e2db213d2b0244bb84ceca7be7303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>38/61</topic><topic>38/77</topic><topic>3T3 Cells</topic><topic>631/337</topic><topic>64/60</topic><topic>692/699</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bone loss</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Differentiation</topic><topic>Disease Models, Animal</topic><topic>ets-Domain Protein Elk-1 - genetics</topic><topic>ets-Domain Protein Elk-1 - metabolism</topic><topic>Gene Targeting</topic><topic>Hindlimb Suspension</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mechanical unloading</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microgravity</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Mineralization</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Osteogenesis</topic><topic>Osteopenia</topic><topic>Osteoporosis</topic><topic>Osteoporosis - genetics</topic><topic>Osteoporosis - metabolism</topic><topic>Osteoporosis - pathology</topic><topic>Osteoporosis - prevention &amp; control</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Signal Transduction</topic><topic>Supplements</topic><topic>Up-Regulation</topic><topic>Weightlessness Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Tan, Yingjun</creatorcontrib><creatorcontrib>Hu, Zebing</creatorcontrib><creatorcontrib>Dang, Lei</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Li, Gaozhi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Shi, Fei</creatorcontrib><creatorcontrib>Cao, Xinsheng</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yixuan</au><au>Wang, Ke</au><au>Zhang, Lijun</au><au>Tan, Yingjun</au><au>Hu, Zebing</au><au>Dang, Lei</au><au>Zhou, Hua</au><au>Li, Gaozhi</au><au>Wang, Han</au><au>Zhang, Shu</au><au>Shi, Fei</au><au>Cao, Xinsheng</au><au>Zhang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>133</spage><epage>133</epage><pages>133-133</pages><artnum>133</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Ameliorating bone loss caused by mechanical unloading is a substantial clinical challenge, and the role of noncoding RNAs in this process has attracted increasing attention. In this study, we found that the long noncoding RNA osteoblast differentiation-related lncRNA under simulated microgravity (lncRNA ODSM) could inhibit osteoblast apoptosis and promote osteoblast mineralization in vitro. The increased expression level of the lncRNA ODSM partially reduced apoptosis and promoted differentiation in MC3T3-E1 cells under microgravity unloading conditions, and the effect was partially dependent on miR-139-3p. LncRNA ODSM supplementation in hindlimb-unloaded mice caused a decrease in the number of apoptotic cells in bone tissue and an increase in osteoblast activity. Furthermore, targeted overexpression of the lncRNA ODSM in osteoblasts partially reversed bone loss induced by mechanical unloading at the microstructural and biomechanical levels. These findings are the first to suggest the potential value of the lncRNA ODSM in osteoporosis therapy and the treatment of pathological osteopenia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32071307</pmid><doi>10.1038/s41419-020-2325-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2020-02, Vol.11 (2), p.133-133, Article 133
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7028725
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 13/1
13/109
13/2
13/31
13/89
38/61
38/77
3T3 Cells
631/337
64/60
692/699
Animals
Antibodies
Apoptosis
Biochemistry
Biomedical and Life Sciences
Bone loss
Cell Biology
Cell Culture
Cell Differentiation
Disease Models, Animal
ets-Domain Protein Elk-1 - genetics
ets-Domain Protein Elk-1 - metabolism
Gene Targeting
Hindlimb Suspension
Immunology
Life Sciences
Male
Mechanical unloading
Mice
Mice, Inbred C57BL
Microgravity
MicroRNAs - genetics
MicroRNAs - metabolism
Mineralization
Osteoblastogenesis
Osteoblasts
Osteoblasts - metabolism
Osteoblasts - pathology
Osteogenesis
Osteopenia
Osteoporosis
Osteoporosis - genetics
Osteoporosis - metabolism
Osteoporosis - pathology
Osteoporosis - prevention & control
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Signal Transduction
Supplements
Up-Regulation
Weightlessness Simulation
title Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20overexpression%20of%20the%20long%20noncoding%20RNA%20ODSM%20can%20regulate%20osteoblast%20function%20in%20vitro%20and%20in%20vivo&rft.jtitle=Cell%20death%20&%20disease&rft.au=Wang,%20Yixuan&rft.date=2020-02-18&rft.volume=11&rft.issue=2&rft.spage=133&rft.epage=133&rft.pages=133-133&rft.artnum=133&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-020-2325-3&rft_dat=%3Cproquest_pubme%3E2357413515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357413515&rft_id=info:pmid/32071307&rfr_iscdi=true