Re-evaluating Circuit Mechanisms Underlying Pattern Separation

When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2019-02, Vol.101 (4), p.584-602
Hauptverfasser: Cayco-Gajic, N. Alex, Silver, R. Angus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 4
container_start_page 584
container_title Neuron (Cambridge, Mass.)
container_volume 101
creator Cayco-Gajic, N. Alex
Silver, R. Angus
description When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability. Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.
doi_str_mv 10.1016/j.neuron.2019.01.044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7028396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319300716</els_id><sourcerecordid>2184094487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqAzT_oOqGolNNwnXj9jxBgmNykMCtYKythznBjzK2FM7GYl_34wGaMuiKy_uOef63I-QzxRKClSerMqAY4qhZEB1CbQEId6RGQWtCkG1fk9mUGtZSKb4ITnKeQVARaXpB3LIQWmouJ6R01sscGv70Q4-PCyWPrnRD4sbdI82-LzOi_vQYuqfdtMfdhgwhcUdbmyaDDF8JAed7TN-en7n5P7828_lZXH9_eJqeXZdOKHpUChmadPoqubYMIe14pXlnGndYUMdR8Uo66yykrOWQtVJ2XDZ6kZxpVStWj4np_vczdissXUYhmR7s0l-bdOTidabfyfBP5qHuDUKWM21nAK-Pgek-GvEPJi1zw773gaMYzaM1lUlBVR6kh6_ka7imMJUb6cSoIWYCsyJ2Ktcijkn7F4_Q8HsAJmV2QMyO0AGqJkATbYvfxd5Nb0Q-dMUp3NuPSaTncfgsPUJ3WDa6P-_4TftbKPq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184094487</pqid></control><display><type>article</type><title>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cayco-Gajic, N. Alex ; Silver, R. Angus</creator><creatorcontrib>Cayco-Gajic, N. Alex ; Silver, R. Angus</creatorcontrib><description>When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability. Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.01.044</identifier><identifier>PMID: 30790539</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activity patterns ; Animals ; Associative learning ; Brain research ; Cerebellum ; Circuits ; Cortex (somatosensory) ; decorrelation ; Dentate gyrus ; dimensionality ; Feedback ; hippocampus ; Hippocampus - physiology ; insect mushroom body ; Models, Neurological ; neural circuits ; Neural networks ; Noise ; pattern separation ; Psychomotor Performance ; Scholarships &amp; fellowships ; Sensorimotor Cortex - physiology ; sensorimotor processing ; sparse coding ; sparse connectivity ; Structure-function relationships ; Theory ; Visual Perception</subject><ispartof>Neuron (Cambridge, Mass.), 2019-02, Vol.101 (4), p.584-602</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</citedby><cites>FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2019.01.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30790539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><title>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability. Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.</description><subject>Activity patterns</subject><subject>Animals</subject><subject>Associative learning</subject><subject>Brain research</subject><subject>Cerebellum</subject><subject>Circuits</subject><subject>Cortex (somatosensory)</subject><subject>decorrelation</subject><subject>Dentate gyrus</subject><subject>dimensionality</subject><subject>Feedback</subject><subject>hippocampus</subject><subject>Hippocampus - physiology</subject><subject>insect mushroom body</subject><subject>Models, Neurological</subject><subject>neural circuits</subject><subject>Neural networks</subject><subject>Noise</subject><subject>pattern separation</subject><subject>Psychomotor Performance</subject><subject>Scholarships &amp; fellowships</subject><subject>Sensorimotor Cortex - physiology</subject><subject>sensorimotor processing</subject><subject>sparse coding</subject><subject>sparse connectivity</subject><subject>Structure-function relationships</subject><subject>Theory</subject><subject>Visual Perception</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3DAUha2qqAzT_oOqGolNNwnXj9jxBgmNykMCtYKythznBjzK2FM7GYl_34wGaMuiKy_uOef63I-QzxRKClSerMqAY4qhZEB1CbQEId6RGQWtCkG1fk9mUGtZSKb4ITnKeQVARaXpB3LIQWmouJ6R01sscGv70Q4-PCyWPrnRD4sbdI82-LzOi_vQYuqfdtMfdhgwhcUdbmyaDDF8JAed7TN-en7n5P7828_lZXH9_eJqeXZdOKHpUChmadPoqubYMIe14pXlnGndYUMdR8Uo66yykrOWQtVJ2XDZ6kZxpVStWj4np_vczdissXUYhmR7s0l-bdOTidabfyfBP5qHuDUKWM21nAK-Pgek-GvEPJi1zw773gaMYzaM1lUlBVR6kh6_ka7imMJUb6cSoIWYCsyJ2Ktcijkn7F4_Q8HsAJmV2QMyO0AGqJkATbYvfxd5Nb0Q-dMUp3NuPSaTncfgsPUJ3WDa6P-_4TftbKPq</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Cayco-Gajic, N. Alex</creator><creator>Silver, R. Angus</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190220</creationdate><title>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</title><author>Cayco-Gajic, N. Alex ; Silver, R. Angus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activity patterns</topic><topic>Animals</topic><topic>Associative learning</topic><topic>Brain research</topic><topic>Cerebellum</topic><topic>Circuits</topic><topic>Cortex (somatosensory)</topic><topic>decorrelation</topic><topic>Dentate gyrus</topic><topic>dimensionality</topic><topic>Feedback</topic><topic>hippocampus</topic><topic>Hippocampus - physiology</topic><topic>insect mushroom body</topic><topic>Models, Neurological</topic><topic>neural circuits</topic><topic>Neural networks</topic><topic>Noise</topic><topic>pattern separation</topic><topic>Psychomotor Performance</topic><topic>Scholarships &amp; fellowships</topic><topic>Sensorimotor Cortex - physiology</topic><topic>sensorimotor processing</topic><topic>sparse coding</topic><topic>sparse connectivity</topic><topic>Structure-function relationships</topic><topic>Theory</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cayco-Gajic, N. Alex</au><au>Silver, R. Angus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>101</volume><issue>4</issue><spage>584</spage><epage>602</epage><pages>584-602</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability. Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30790539</pmid><doi>10.1016/j.neuron.2019.01.044</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2019-02, Vol.101 (4), p.584-602
issn 0896-6273
1097-4199
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7028396
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Activity patterns
Animals
Associative learning
Brain research
Cerebellum
Circuits
Cortex (somatosensory)
decorrelation
Dentate gyrus
dimensionality
Feedback
hippocampus
Hippocampus - physiology
insect mushroom body
Models, Neurological
neural circuits
Neural networks
Noise
pattern separation
Psychomotor Performance
Scholarships & fellowships
Sensorimotor Cortex - physiology
sensorimotor processing
sparse coding
sparse connectivity
Structure-function relationships
Theory
Visual Perception
title Re-evaluating Circuit Mechanisms Underlying Pattern Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-evaluating%20Circuit%20Mechanisms%20Underlying%20Pattern%20Separation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Cayco-Gajic,%20N.%20Alex&rft.date=2019-02-20&rft.volume=101&rft.issue=4&rft.spage=584&rft.epage=602&rft.pages=584-602&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.01.044&rft_dat=%3Cproquest_pubme%3E2184094487%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184094487&rft_id=info:pmid/30790539&rft_els_id=S0896627319300716&rfr_iscdi=true