Re-evaluating Circuit Mechanisms Underlying Pattern Separation
When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2019-02, Vol.101 (4), p.584-602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 602 |
---|---|
container_issue | 4 |
container_start_page | 584 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 101 |
creator | Cayco-Gajic, N. Alex Silver, R. Angus |
description | When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus. |
doi_str_mv | 10.1016/j.neuron.2019.01.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7028396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319300716</els_id><sourcerecordid>2184094487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqAzT_oOqGolNNwnXj9jxBgmNykMCtYKythznBjzK2FM7GYl_34wGaMuiKy_uOef63I-QzxRKClSerMqAY4qhZEB1CbQEId6RGQWtCkG1fk9mUGtZSKb4ITnKeQVARaXpB3LIQWmouJ6R01sscGv70Q4-PCyWPrnRD4sbdI82-LzOi_vQYuqfdtMfdhgwhcUdbmyaDDF8JAed7TN-en7n5P7828_lZXH9_eJqeXZdOKHpUChmadPoqubYMIe14pXlnGndYUMdR8Uo66yykrOWQtVJ2XDZ6kZxpVStWj4np_vczdissXUYhmR7s0l-bdOTidabfyfBP5qHuDUKWM21nAK-Pgek-GvEPJi1zw773gaMYzaM1lUlBVR6kh6_ka7imMJUb6cSoIWYCsyJ2Ktcijkn7F4_Q8HsAJmV2QMyO0AGqJkATbYvfxd5Nb0Q-dMUp3NuPSaTncfgsPUJ3WDa6P-_4TftbKPq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184094487</pqid></control><display><type>article</type><title>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cayco-Gajic, N. Alex ; Silver, R. Angus</creator><creatorcontrib>Cayco-Gajic, N. Alex ; Silver, R. Angus</creatorcontrib><description>When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.01.044</identifier><identifier>PMID: 30790539</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activity patterns ; Animals ; Associative learning ; Brain research ; Cerebellum ; Circuits ; Cortex (somatosensory) ; decorrelation ; Dentate gyrus ; dimensionality ; Feedback ; hippocampus ; Hippocampus - physiology ; insect mushroom body ; Models, Neurological ; neural circuits ; Neural networks ; Noise ; pattern separation ; Psychomotor Performance ; Scholarships & fellowships ; Sensorimotor Cortex - physiology ; sensorimotor processing ; sparse coding ; sparse connectivity ; Structure-function relationships ; Theory ; Visual Perception</subject><ispartof>Neuron (Cambridge, Mass.), 2019-02, Vol.101 (4), p.584-602</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</citedby><cites>FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2019.01.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30790539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><title>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.</description><subject>Activity patterns</subject><subject>Animals</subject><subject>Associative learning</subject><subject>Brain research</subject><subject>Cerebellum</subject><subject>Circuits</subject><subject>Cortex (somatosensory)</subject><subject>decorrelation</subject><subject>Dentate gyrus</subject><subject>dimensionality</subject><subject>Feedback</subject><subject>hippocampus</subject><subject>Hippocampus - physiology</subject><subject>insect mushroom body</subject><subject>Models, Neurological</subject><subject>neural circuits</subject><subject>Neural networks</subject><subject>Noise</subject><subject>pattern separation</subject><subject>Psychomotor Performance</subject><subject>Scholarships & fellowships</subject><subject>Sensorimotor Cortex - physiology</subject><subject>sensorimotor processing</subject><subject>sparse coding</subject><subject>sparse connectivity</subject><subject>Structure-function relationships</subject><subject>Theory</subject><subject>Visual Perception</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3DAUha2qqAzT_oOqGolNNwnXj9jxBgmNykMCtYKythznBjzK2FM7GYl_34wGaMuiKy_uOef63I-QzxRKClSerMqAY4qhZEB1CbQEId6RGQWtCkG1fk9mUGtZSKb4ITnKeQVARaXpB3LIQWmouJ6R01sscGv70Q4-PCyWPrnRD4sbdI82-LzOi_vQYuqfdtMfdhgwhcUdbmyaDDF8JAed7TN-en7n5P7828_lZXH9_eJqeXZdOKHpUChmadPoqubYMIe14pXlnGndYUMdR8Uo66yykrOWQtVJ2XDZ6kZxpVStWj4np_vczdissXUYhmR7s0l-bdOTidabfyfBP5qHuDUKWM21nAK-Pgek-GvEPJi1zw773gaMYzaM1lUlBVR6kh6_ka7imMJUb6cSoIWYCsyJ2Ktcijkn7F4_Q8HsAJmV2QMyO0AGqJkATbYvfxd5Nb0Q-dMUp3NuPSaTncfgsPUJ3WDa6P-_4TftbKPq</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Cayco-Gajic, N. Alex</creator><creator>Silver, R. Angus</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190220</creationdate><title>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</title><author>Cayco-Gajic, N. Alex ; Silver, R. Angus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-72a1bb9583eb2ce8735a33299feb1c3e7212fa7a632d105f66b36d9b7377787d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activity patterns</topic><topic>Animals</topic><topic>Associative learning</topic><topic>Brain research</topic><topic>Cerebellum</topic><topic>Circuits</topic><topic>Cortex (somatosensory)</topic><topic>decorrelation</topic><topic>Dentate gyrus</topic><topic>dimensionality</topic><topic>Feedback</topic><topic>hippocampus</topic><topic>Hippocampus - physiology</topic><topic>insect mushroom body</topic><topic>Models, Neurological</topic><topic>neural circuits</topic><topic>Neural networks</topic><topic>Noise</topic><topic>pattern separation</topic><topic>Psychomotor Performance</topic><topic>Scholarships & fellowships</topic><topic>Sensorimotor Cortex - physiology</topic><topic>sensorimotor processing</topic><topic>sparse coding</topic><topic>sparse connectivity</topic><topic>Structure-function relationships</topic><topic>Theory</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cayco-Gajic, N. Alex</au><au>Silver, R. Angus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-evaluating Circuit Mechanisms Underlying Pattern Separation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>101</volume><issue>4</issue><spage>584</spage><epage>602</epage><pages>584-602</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Pattern separation is a fundamental neural computation thought to facilitate associative learning. Cayco-Gajic and Silver review recent theoretical and experimental advances on the key determinants of pattern separation in the cerebellar cortex, insect mushroom body, and dentate gyrus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30790539</pmid><doi>10.1016/j.neuron.2019.01.044</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2019-02, Vol.101 (4), p.584-602 |
issn | 0896-6273 1097-4199 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7028396 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Activity patterns Animals Associative learning Brain research Cerebellum Circuits Cortex (somatosensory) decorrelation Dentate gyrus dimensionality Feedback hippocampus Hippocampus - physiology insect mushroom body Models, Neurological neural circuits Neural networks Noise pattern separation Psychomotor Performance Scholarships & fellowships Sensorimotor Cortex - physiology sensorimotor processing sparse coding sparse connectivity Structure-function relationships Theory Visual Perception |
title | Re-evaluating Circuit Mechanisms Underlying Pattern Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-evaluating%20Circuit%20Mechanisms%20Underlying%20Pattern%20Separation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Cayco-Gajic,%20N.%20Alex&rft.date=2019-02-20&rft.volume=101&rft.issue=4&rft.spage=584&rft.epage=602&rft.pages=584-602&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.01.044&rft_dat=%3Cproquest_pubme%3E2184094487%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184094487&rft_id=info:pmid/30790539&rft_els_id=S0896627319300716&rfr_iscdi=true |