Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging
Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite Plasmodium falciparum . Because P. falciparum lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.2794-2794, Article 2794 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2794 |
---|---|
container_issue | 1 |
container_start_page | 2794 |
container_title | Scientific reports |
container_volume | 10 |
creator | Hayakawa, Eri H. Yamaguchi, Kentaro Mori, Masahiro Nardone, Glenn |
description | Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite
Plasmodium falciparum
. Because
P. falciparum
lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live
P. falciparum
parasites and structurally investigate erythrocyte membranes, both during and after
P. falciparum
invasion of human erythrocytes. After
P. falciparum
initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of
P. falciparum
-infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of
P. falciparum
. |
doi_str_mv | 10.1038/s41598-020-59552-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7026401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357458927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rLuH_AgAS9eovmqdOciyPoJC4roOWTS1TNZ0p0x6V6Yf2_WWdfVg7kkUM_7VlVeQp4K_lJw1b-qWoDtGZecgQWQzD4gp5JrYFJJ-fDe-4Sc13rF2wFptbCPyYmS3JhemFOy-4o-sSVOSMMuJ6wLlpxozWWJ85bGmX5Jvk55iOtER59C3PuyTgzLYdmVHA4LVuorLXjdjHCgmwNVb2nyG0xsLIg0Tn7brJ6QR01e8fz2PiPf37_7dvGRXX7-8OnizSULoPnCIPABUCmvgCuPUljhe9PxzggB2iipRjuAxVFzpQfBwYPxGxFMH7reDqM6I6-Pvvt1M-EQcF6KT25f2hzl4LKP7u_KHHdum69dx6XRXDSDF7cGJf9Y24e4KdaAKfkZ81qdVNBp6K3sGvr8H_Qqr2Vu691QxkDXG90oeaRCybUWHO-GEdzdZOmOWbqWpfuVpbNN9Oz-GneS38k1QB2B2krzFsuf3v-x_QkBrapp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356657864</pqid></control><display><type>article</type><title>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hayakawa, Eri H. ; Yamaguchi, Kentaro ; Mori, Masahiro ; Nardone, Glenn</creator><creatorcontrib>Hayakawa, Eri H. ; Yamaguchi, Kentaro ; Mori, Masahiro ; Nardone, Glenn</creatorcontrib><description>Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite
Plasmodium falciparum
. Because
P. falciparum
lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live
P. falciparum
parasites and structurally investigate erythrocyte membranes, both during and after
P. falciparum
invasion of human erythrocytes. After
P. falciparum
initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of
P. falciparum
-infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of
P. falciparum
.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59552-9</identifier><identifier>PMID: 32066816</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/34 ; 14/63 ; 631/326/417/1716 ; 631/535 ; Animals ; Cell membranes ; Cholesterol ; Cholesterol - isolation & purification ; Cholesterol - metabolism ; Cytosol ; Endocytosis - drug effects ; Endocytosis - genetics ; Erythrocytes ; Erythrocytes - ultrastructure ; Humanities and Social Sciences ; Humans ; Lipid membranes ; Malaria ; Malaria, Falciparum - diagnostic imaging ; Malaria, Falciparum - parasitology ; Malaria, Falciparum - pathology ; Membranes ; Molecular Imaging ; multidisciplinary ; Parasites ; Parasitophorous vacuole ; Plasmodium falciparum ; Plasmodium falciparum - pathogenicity ; Science ; Science (multidisciplinary) ; Vector-borne diseases</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.2794-2794, Article 2794</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</citedby><cites>FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026401/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026401/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32066816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayakawa, Eri H.</creatorcontrib><creatorcontrib>Yamaguchi, Kentaro</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><creatorcontrib>Nardone, Glenn</creatorcontrib><title>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite
Plasmodium falciparum
. Because
P. falciparum
lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live
P. falciparum
parasites and structurally investigate erythrocyte membranes, both during and after
P. falciparum
invasion of human erythrocytes. After
P. falciparum
initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of
P. falciparum
-infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of
P. falciparum
.</description><subject>14/34</subject><subject>14/63</subject><subject>631/326/417/1716</subject><subject>631/535</subject><subject>Animals</subject><subject>Cell membranes</subject><subject>Cholesterol</subject><subject>Cholesterol - isolation & purification</subject><subject>Cholesterol - metabolism</subject><subject>Cytosol</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - genetics</subject><subject>Erythrocytes</subject><subject>Erythrocytes - ultrastructure</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lipid membranes</subject><subject>Malaria</subject><subject>Malaria, Falciparum - diagnostic imaging</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Malaria, Falciparum - pathology</subject><subject>Membranes</subject><subject>Molecular Imaging</subject><subject>multidisciplinary</subject><subject>Parasites</subject><subject>Parasitophorous vacuole</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vector-borne diseases</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU2LFDEQhoMo7rLuH_AgAS9eovmqdOciyPoJC4roOWTS1TNZ0p0x6V6Yf2_WWdfVg7kkUM_7VlVeQp4K_lJw1b-qWoDtGZecgQWQzD4gp5JrYFJJ-fDe-4Sc13rF2wFptbCPyYmS3JhemFOy-4o-sSVOSMMuJ6wLlpxozWWJ85bGmX5Jvk55iOtER59C3PuyTgzLYdmVHA4LVuorLXjdjHCgmwNVb2nyG0xsLIg0Tn7brJ6QR01e8fz2PiPf37_7dvGRXX7-8OnizSULoPnCIPABUCmvgCuPUljhe9PxzggB2iipRjuAxVFzpQfBwYPxGxFMH7reDqM6I6-Pvvt1M-EQcF6KT25f2hzl4LKP7u_KHHdum69dx6XRXDSDF7cGJf9Y24e4KdaAKfkZ81qdVNBp6K3sGvr8H_Qqr2Vu691QxkDXG90oeaRCybUWHO-GEdzdZOmOWbqWpfuVpbNN9Oz-GneS38k1QB2B2krzFsuf3v-x_QkBrapp</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Hayakawa, Eri H.</creator><creator>Yamaguchi, Kentaro</creator><creator>Mori, Masahiro</creator><creator>Nardone, Glenn</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200217</creationdate><title>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</title><author>Hayakawa, Eri H. ; Yamaguchi, Kentaro ; Mori, Masahiro ; Nardone, Glenn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/34</topic><topic>14/63</topic><topic>631/326/417/1716</topic><topic>631/535</topic><topic>Animals</topic><topic>Cell membranes</topic><topic>Cholesterol</topic><topic>Cholesterol - isolation & purification</topic><topic>Cholesterol - metabolism</topic><topic>Cytosol</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - genetics</topic><topic>Erythrocytes</topic><topic>Erythrocytes - ultrastructure</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lipid membranes</topic><topic>Malaria</topic><topic>Malaria, Falciparum - diagnostic imaging</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Malaria, Falciparum - pathology</topic><topic>Membranes</topic><topic>Molecular Imaging</topic><topic>multidisciplinary</topic><topic>Parasites</topic><topic>Parasitophorous vacuole</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayakawa, Eri H.</creatorcontrib><creatorcontrib>Yamaguchi, Kentaro</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><creatorcontrib>Nardone, Glenn</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayakawa, Eri H.</au><au>Yamaguchi, Kentaro</au><au>Mori, Masahiro</au><au>Nardone, Glenn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>2794</spage><epage>2794</epage><pages>2794-2794</pages><artnum>2794</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite
Plasmodium falciparum
. Because
P. falciparum
lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live
P. falciparum
parasites and structurally investigate erythrocyte membranes, both during and after
P. falciparum
invasion of human erythrocytes. After
P. falciparum
initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of
P. falciparum
-infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of
P. falciparum
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32066816</pmid><doi>10.1038/s41598-020-59552-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.2794-2794, Article 2794 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7026401 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 14/34 14/63 631/326/417/1716 631/535 Animals Cell membranes Cholesterol Cholesterol - isolation & purification Cholesterol - metabolism Cytosol Endocytosis - drug effects Endocytosis - genetics Erythrocytes Erythrocytes - ultrastructure Humanities and Social Sciences Humans Lipid membranes Malaria Malaria, Falciparum - diagnostic imaging Malaria, Falciparum - parasitology Malaria, Falciparum - pathology Membranes Molecular Imaging multidisciplinary Parasites Parasitophorous vacuole Plasmodium falciparum Plasmodium falciparum - pathogenicity Science Science (multidisciplinary) Vector-borne diseases |
title | Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20cholesterol%20sorting%20in%20Plasmodium%20falciparum-erythrocytes%20as%20revealed%20by%203D%20label-free%20imaging&rft.jtitle=Scientific%20reports&rft.au=Hayakawa,%20Eri%20H.&rft.date=2020-02-17&rft.volume=10&rft.issue=1&rft.spage=2794&rft.epage=2794&rft.pages=2794-2794&rft.artnum=2794&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59552-9&rft_dat=%3Cproquest_pubme%3E2357458927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356657864&rft_id=info:pmid/32066816&rfr_iscdi=true |