Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging

Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite Plasmodium falciparum . Because P. falciparum lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.2794-2794, Article 2794
Hauptverfasser: Hayakawa, Eri H., Yamaguchi, Kentaro, Mori, Masahiro, Nardone, Glenn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2794
container_issue 1
container_start_page 2794
container_title Scientific reports
container_volume 10
creator Hayakawa, Eri H.
Yamaguchi, Kentaro
Mori, Masahiro
Nardone, Glenn
description Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite Plasmodium falciparum . Because P. falciparum lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live P. falciparum parasites and structurally investigate erythrocyte membranes, both during and after P. falciparum invasion of human erythrocytes. After P. falciparum initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of P. falciparum -infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of P. falciparum .
doi_str_mv 10.1038/s41598-020-59552-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7026401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357458927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rLuH_AgAS9eovmqdOciyPoJC4roOWTS1TNZ0p0x6V6Yf2_WWdfVg7kkUM_7VlVeQp4K_lJw1b-qWoDtGZecgQWQzD4gp5JrYFJJ-fDe-4Sc13rF2wFptbCPyYmS3JhemFOy-4o-sSVOSMMuJ6wLlpxozWWJ85bGmX5Jvk55iOtER59C3PuyTgzLYdmVHA4LVuorLXjdjHCgmwNVb2nyG0xsLIg0Tn7brJ6QR01e8fz2PiPf37_7dvGRXX7-8OnizSULoPnCIPABUCmvgCuPUljhe9PxzggB2iipRjuAxVFzpQfBwYPxGxFMH7reDqM6I6-Pvvt1M-EQcF6KT25f2hzl4LKP7u_KHHdum69dx6XRXDSDF7cGJf9Y24e4KdaAKfkZ81qdVNBp6K3sGvr8H_Qqr2Vu691QxkDXG90oeaRCybUWHO-GEdzdZOmOWbqWpfuVpbNN9Oz-GneS38k1QB2B2krzFsuf3v-x_QkBrapp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356657864</pqid></control><display><type>article</type><title>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hayakawa, Eri H. ; Yamaguchi, Kentaro ; Mori, Masahiro ; Nardone, Glenn</creator><creatorcontrib>Hayakawa, Eri H. ; Yamaguchi, Kentaro ; Mori, Masahiro ; Nardone, Glenn</creatorcontrib><description>Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite Plasmodium falciparum . Because P. falciparum lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live P. falciparum parasites and structurally investigate erythrocyte membranes, both during and after P. falciparum invasion of human erythrocytes. After P. falciparum initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of P. falciparum -infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of P. falciparum .</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59552-9</identifier><identifier>PMID: 32066816</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/34 ; 14/63 ; 631/326/417/1716 ; 631/535 ; Animals ; Cell membranes ; Cholesterol ; Cholesterol - isolation &amp; purification ; Cholesterol - metabolism ; Cytosol ; Endocytosis - drug effects ; Endocytosis - genetics ; Erythrocytes ; Erythrocytes - ultrastructure ; Humanities and Social Sciences ; Humans ; Lipid membranes ; Malaria ; Malaria, Falciparum - diagnostic imaging ; Malaria, Falciparum - parasitology ; Malaria, Falciparum - pathology ; Membranes ; Molecular Imaging ; multidisciplinary ; Parasites ; Parasitophorous vacuole ; Plasmodium falciparum ; Plasmodium falciparum - pathogenicity ; Science ; Science (multidisciplinary) ; Vector-borne diseases</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.2794-2794, Article 2794</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</citedby><cites>FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026401/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026401/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32066816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayakawa, Eri H.</creatorcontrib><creatorcontrib>Yamaguchi, Kentaro</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><creatorcontrib>Nardone, Glenn</creatorcontrib><title>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite Plasmodium falciparum . Because P. falciparum lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live P. falciparum parasites and structurally investigate erythrocyte membranes, both during and after P. falciparum invasion of human erythrocytes. After P. falciparum initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of P. falciparum -infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of P. falciparum .</description><subject>14/34</subject><subject>14/63</subject><subject>631/326/417/1716</subject><subject>631/535</subject><subject>Animals</subject><subject>Cell membranes</subject><subject>Cholesterol</subject><subject>Cholesterol - isolation &amp; purification</subject><subject>Cholesterol - metabolism</subject><subject>Cytosol</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - genetics</subject><subject>Erythrocytes</subject><subject>Erythrocytes - ultrastructure</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lipid membranes</subject><subject>Malaria</subject><subject>Malaria, Falciparum - diagnostic imaging</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Malaria, Falciparum - pathology</subject><subject>Membranes</subject><subject>Molecular Imaging</subject><subject>multidisciplinary</subject><subject>Parasites</subject><subject>Parasitophorous vacuole</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vector-borne diseases</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU2LFDEQhoMo7rLuH_AgAS9eovmqdOciyPoJC4roOWTS1TNZ0p0x6V6Yf2_WWdfVg7kkUM_7VlVeQp4K_lJw1b-qWoDtGZecgQWQzD4gp5JrYFJJ-fDe-4Sc13rF2wFptbCPyYmS3JhemFOy-4o-sSVOSMMuJ6wLlpxozWWJ85bGmX5Jvk55iOtER59C3PuyTgzLYdmVHA4LVuorLXjdjHCgmwNVb2nyG0xsLIg0Tn7brJ6QR01e8fz2PiPf37_7dvGRXX7-8OnizSULoPnCIPABUCmvgCuPUljhe9PxzggB2iipRjuAxVFzpQfBwYPxGxFMH7reDqM6I6-Pvvt1M-EQcF6KT25f2hzl4LKP7u_KHHdum69dx6XRXDSDF7cGJf9Y24e4KdaAKfkZ81qdVNBp6K3sGvr8H_Qqr2Vu691QxkDXG90oeaRCybUWHO-GEdzdZOmOWbqWpfuVpbNN9Oz-GneS38k1QB2B2krzFsuf3v-x_QkBrapp</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Hayakawa, Eri H.</creator><creator>Yamaguchi, Kentaro</creator><creator>Mori, Masahiro</creator><creator>Nardone, Glenn</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200217</creationdate><title>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</title><author>Hayakawa, Eri H. ; Yamaguchi, Kentaro ; Mori, Masahiro ; Nardone, Glenn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5c0d5e33a3503ae2191a86707611546323f9d59ef4034d105a56ab1c68c789df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/34</topic><topic>14/63</topic><topic>631/326/417/1716</topic><topic>631/535</topic><topic>Animals</topic><topic>Cell membranes</topic><topic>Cholesterol</topic><topic>Cholesterol - isolation &amp; purification</topic><topic>Cholesterol - metabolism</topic><topic>Cytosol</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - genetics</topic><topic>Erythrocytes</topic><topic>Erythrocytes - ultrastructure</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lipid membranes</topic><topic>Malaria</topic><topic>Malaria, Falciparum - diagnostic imaging</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Malaria, Falciparum - pathology</topic><topic>Membranes</topic><topic>Molecular Imaging</topic><topic>multidisciplinary</topic><topic>Parasites</topic><topic>Parasitophorous vacuole</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayakawa, Eri H.</creatorcontrib><creatorcontrib>Yamaguchi, Kentaro</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><creatorcontrib>Nardone, Glenn</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayakawa, Eri H.</au><au>Yamaguchi, Kentaro</au><au>Mori, Masahiro</au><au>Nardone, Glenn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>2794</spage><epage>2794</epage><pages>2794-2794</pages><artnum>2794</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cholesterol, a necessary component of animal cell membranes, is also needed by the lethal human malaria parasite Plasmodium falciparum . Because P. falciparum lacks a cholesterol synthesis pathway and malaria patients have low blood cholesterol, we speculated that it scavenges cholesterol from them in some way. We used time-lapse holotomographic microscopy to observe cholesterol transport in live P. falciparum parasites and structurally investigate erythrocyte membranes, both during and after P. falciparum invasion of human erythrocytes. After P. falciparum initially acquired free cholesterol or inner erythrocytic membrane-derived cholesterol, we observed budding lipid membranes elongating into the cytosol and/or membrane segments migrating there and eventually fusing with the parasite membranes, presumably at the parasitophorous vacuole membrane (PVM). Finally, the cholesterol-containing segments were seen to surround the parasite nucleus. Our imaging data suggest that a novel membrane transport system operates in the cytosol of P. falciparum -infected erythrocytes as a cholesterol import system, likely between the PVM and the erythrocyte membrane, and that this transportation process occurs during the live erythrocyte stages of P. falciparum .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32066816</pmid><doi>10.1038/s41598-020-59552-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-02, Vol.10 (1), p.2794-2794, Article 2794
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7026401
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 14/34
14/63
631/326/417/1716
631/535
Animals
Cell membranes
Cholesterol
Cholesterol - isolation & purification
Cholesterol - metabolism
Cytosol
Endocytosis - drug effects
Endocytosis - genetics
Erythrocytes
Erythrocytes - ultrastructure
Humanities and Social Sciences
Humans
Lipid membranes
Malaria
Malaria, Falciparum - diagnostic imaging
Malaria, Falciparum - parasitology
Malaria, Falciparum - pathology
Membranes
Molecular Imaging
multidisciplinary
Parasites
Parasitophorous vacuole
Plasmodium falciparum
Plasmodium falciparum - pathogenicity
Science
Science (multidisciplinary)
Vector-borne diseases
title Real-time cholesterol sorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-free imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20cholesterol%20sorting%20in%20Plasmodium%20falciparum-erythrocytes%20as%20revealed%20by%203D%20label-free%20imaging&rft.jtitle=Scientific%20reports&rft.au=Hayakawa,%20Eri%20H.&rft.date=2020-02-17&rft.volume=10&rft.issue=1&rft.spage=2794&rft.epage=2794&rft.pages=2794-2794&rft.artnum=2794&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59552-9&rft_dat=%3Cproquest_pubme%3E2357458927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356657864&rft_id=info:pmid/32066816&rfr_iscdi=true