Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation

Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for in vivo genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the in vivo function of specific genes in organ development, tissue re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-02, Vol.39 (4), p.e102675-n/a
Hauptverfasser: Tian, Xueying, He, Lingjuan, Liu, Kuo, Pu, Wenjuan, Zhao, Huan, Li, Yan, Liu, Xiuxiu, Tang, Muxue, Sun, Ruilin, Fei, Jian, Ji, Yong, Qiao, Zengyong, Lui, Kathy O, Zhou, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e102675
container_title The EMBO journal
container_volume 39
creator Tian, Xueying
He, Lingjuan
Liu, Kuo
Pu, Wenjuan
Zhao, Huan
Li, Yan
Liu, Xiuxiu
Tang, Muxue
Sun, Ruilin
Fei, Jian
Ji, Yong
Qiao, Zengyong
Lui, Kathy O
Zhou, Bin
description Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for in vivo genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the in vivo function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a s elf‐cleaved inducible CreER ( s CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver Npr3‐sCreER and fibroblast driver Col1a2‐sCreER , and compared them with conventional Npr3‐CreER and Col1a2‐CreER, respectively. For easy‐to‐recombine alleles such as R26‐tdTomato , there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as R26‐Confetti , R26‐LZLT , R26‐GFP , or VEGFR2 flox / flox alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective in vivo genomic modification for studying gene function in specific cell lineages. Synopsis A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination. sCreER exhibits temporal control property by tamoxifen. sCreER self‐cleaves and converts to Cre for robust gene deletion. sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus. Graphical Abstract Methodological development of the inducible Cre recombinase system for in vivo genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.
doi_str_mv 10.15252/embj.2019102675
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7024834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355783618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</originalsourceid><addsrcrecordid>eNqFkc1qFTEYhoNY7Gl135UEXE-b_8mACHroj6XiRtchk_nmNIeZ5JjMVLrzErzGXknTntrahbgKJO_75IEXoQNKDqlkkh3B2K4PGaENJUzV8gVaUKFIxUgtX6JFuaOVoLrZRXs5rwkhUtf0FdrltBGcabpA3SkESHbyMeDYY4szDP3Nr99uAHsFHfahm51vB8DLBDiBi2Prg82A-5gw9L13HsKEJxg3MdkBrwpv8g6PNvjNPNyTX6Od3g4Z3jyc--j7yfG35Vl18fX08_LjReUkbWTV2q7hPaNEupqCbaWoFahOWs1Z23SEcM2IVVzp8tBYRZVlAlqieO1EIwTfRx-23M3cjtC5IlaUzCb50aZrE603z1-CvzSreGVqwoTmd4B3D4AUf8yQJ7OOcwrF2TAuZa25orqkyDblUsw5Qf_4AyXmfhdzt4t52qVU3v5t9lj4M0QJvN8GfvoBrv8LNMdfPp0_49NtPZdmWEF6Ev-n0y2hwazF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355783618</pqid></control><display><type>article</type><title>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</title><source>SpringerOpen</source><creator>Tian, Xueying ; He, Lingjuan ; Liu, Kuo ; Pu, Wenjuan ; Zhao, Huan ; Li, Yan ; Liu, Xiuxiu ; Tang, Muxue ; Sun, Ruilin ; Fei, Jian ; Ji, Yong ; Qiao, Zengyong ; Lui, Kathy O ; Zhou, Bin</creator><creatorcontrib>Tian, Xueying ; He, Lingjuan ; Liu, Kuo ; Pu, Wenjuan ; Zhao, Huan ; Li, Yan ; Liu, Xiuxiu ; Tang, Muxue ; Sun, Ruilin ; Fei, Jian ; Ji, Yong ; Qiao, Zengyong ; Lui, Kathy O ; Zhou, Bin</creatorcontrib><description>Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for in vivo genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the in vivo function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a s elf‐cleaved inducible CreER ( s CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver Npr3‐sCreER and fibroblast driver Col1a2‐sCreER , and compared them with conventional Npr3‐CreER and Col1a2‐CreER, respectively. For easy‐to‐recombine alleles such as R26‐tdTomato , there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as R26‐Confetti , R26‐LZLT , R26‐GFP , or VEGFR2 flox / flox alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective in vivo genomic modification for studying gene function in specific cell lineages. Synopsis A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination. sCreER exhibits temporal control property by tamoxifen. sCreER self‐cleaves and converts to Cre for robust gene deletion. sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus. Graphical Abstract Methodological development of the inducible Cre recombinase system for in vivo genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019102675</identifier><identifier>PMID: 31943281</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alleles ; Animals ; Cell Lineage ; cell lineages ; Clonal deletion ; Cre recombinase ; Cre‐loxP ; Deoxyribonucleic acid ; DNA ; Efficiency ; EMBO16 ; EMBO22 ; Female ; Fibroblasts ; Flox ; Gene Deletion ; Gene Expression ; Gene manipulation ; Genetic engineering ; genetic manipulation ; Genotypes ; Integrases - genetics ; Integrases - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Protein transport ; Recombination ; Recombination, Genetic ; Regeneration ; Resource ; Switches ; Tamoxifen ; Tissue engineering</subject><ispartof>The EMBO journal, 2020-02, Vol.39 (4), p.e102675-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</citedby><cites>FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</cites><orcidid>0000-0001-5278-5522 ; 0000-0002-1616-3643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024834/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024834/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2019102675$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Xueying</creatorcontrib><creatorcontrib>He, Lingjuan</creatorcontrib><creatorcontrib>Liu, Kuo</creatorcontrib><creatorcontrib>Pu, Wenjuan</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Xiuxiu</creatorcontrib><creatorcontrib>Tang, Muxue</creatorcontrib><creatorcontrib>Sun, Ruilin</creatorcontrib><creatorcontrib>Fei, Jian</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Qiao, Zengyong</creatorcontrib><creatorcontrib>Lui, Kathy O</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><title>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for in vivo genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the in vivo function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a s elf‐cleaved inducible CreER ( s CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver Npr3‐sCreER and fibroblast driver Col1a2‐sCreER , and compared them with conventional Npr3‐CreER and Col1a2‐CreER, respectively. For easy‐to‐recombine alleles such as R26‐tdTomato , there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as R26‐Confetti , R26‐LZLT , R26‐GFP , or VEGFR2 flox / flox alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective in vivo genomic modification for studying gene function in specific cell lineages. Synopsis A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination. sCreER exhibits temporal control property by tamoxifen. sCreER self‐cleaves and converts to Cre for robust gene deletion. sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus. Graphical Abstract Methodological development of the inducible Cre recombinase system for in vivo genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.</description><subject>Alleles</subject><subject>Animals</subject><subject>Cell Lineage</subject><subject>cell lineages</subject><subject>Clonal deletion</subject><subject>Cre recombinase</subject><subject>Cre‐loxP</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Efficiency</subject><subject>EMBO16</subject><subject>EMBO22</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Flox</subject><subject>Gene Deletion</subject><subject>Gene Expression</subject><subject>Gene manipulation</subject><subject>Genetic engineering</subject><subject>genetic manipulation</subject><subject>Genotypes</subject><subject>Integrases - genetics</subject><subject>Integrases - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Protein transport</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><subject>Regeneration</subject><subject>Resource</subject><subject>Switches</subject><subject>Tamoxifen</subject><subject>Tissue engineering</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1qFTEYhoNY7Gl135UEXE-b_8mACHroj6XiRtchk_nmNIeZ5JjMVLrzErzGXknTntrahbgKJO_75IEXoQNKDqlkkh3B2K4PGaENJUzV8gVaUKFIxUgtX6JFuaOVoLrZRXs5rwkhUtf0FdrltBGcabpA3SkESHbyMeDYY4szDP3Nr99uAHsFHfahm51vB8DLBDiBi2Prg82A-5gw9L13HsKEJxg3MdkBrwpv8g6PNvjNPNyTX6Od3g4Z3jyc--j7yfG35Vl18fX08_LjReUkbWTV2q7hPaNEupqCbaWoFahOWs1Z23SEcM2IVVzp8tBYRZVlAlqieO1EIwTfRx-23M3cjtC5IlaUzCb50aZrE603z1-CvzSreGVqwoTmd4B3D4AUf8yQJ7OOcwrF2TAuZa25orqkyDblUsw5Qf_4AyXmfhdzt4t52qVU3v5t9lj4M0QJvN8GfvoBrv8LNMdfPp0_49NtPZdmWEF6Ev-n0y2hwazF</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Tian, Xueying</creator><creator>He, Lingjuan</creator><creator>Liu, Kuo</creator><creator>Pu, Wenjuan</creator><creator>Zhao, Huan</creator><creator>Li, Yan</creator><creator>Liu, Xiuxiu</creator><creator>Tang, Muxue</creator><creator>Sun, Ruilin</creator><creator>Fei, Jian</creator><creator>Ji, Yong</creator><creator>Qiao, Zengyong</creator><creator>Lui, Kathy O</creator><creator>Zhou, Bin</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5278-5522</orcidid><orcidid>https://orcid.org/0000-0002-1616-3643</orcidid></search><sort><creationdate>20200217</creationdate><title>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</title><author>Tian, Xueying ; He, Lingjuan ; Liu, Kuo ; Pu, Wenjuan ; Zhao, Huan ; Li, Yan ; Liu, Xiuxiu ; Tang, Muxue ; Sun, Ruilin ; Fei, Jian ; Ji, Yong ; Qiao, Zengyong ; Lui, Kathy O ; Zhou, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Cell Lineage</topic><topic>cell lineages</topic><topic>Clonal deletion</topic><topic>Cre recombinase</topic><topic>Cre‐loxP</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Efficiency</topic><topic>EMBO16</topic><topic>EMBO22</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Flox</topic><topic>Gene Deletion</topic><topic>Gene Expression</topic><topic>Gene manipulation</topic><topic>Genetic engineering</topic><topic>genetic manipulation</topic><topic>Genotypes</topic><topic>Integrases - genetics</topic><topic>Integrases - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Protein transport</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><topic>Regeneration</topic><topic>Resource</topic><topic>Switches</topic><topic>Tamoxifen</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xueying</creatorcontrib><creatorcontrib>He, Lingjuan</creatorcontrib><creatorcontrib>Liu, Kuo</creatorcontrib><creatorcontrib>Pu, Wenjuan</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Xiuxiu</creatorcontrib><creatorcontrib>Tang, Muxue</creatorcontrib><creatorcontrib>Sun, Ruilin</creatorcontrib><creatorcontrib>Fei, Jian</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Qiao, Zengyong</creatorcontrib><creatorcontrib>Lui, Kathy O</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Xueying</au><au>He, Lingjuan</au><au>Liu, Kuo</au><au>Pu, Wenjuan</au><au>Zhao, Huan</au><au>Li, Yan</au><au>Liu, Xiuxiu</au><au>Tang, Muxue</au><au>Sun, Ruilin</au><au>Fei, Jian</au><au>Ji, Yong</au><au>Qiao, Zengyong</au><au>Lui, Kathy O</au><au>Zhou, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><spage>e102675</spage><epage>n/a</epage><pages>e102675-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for in vivo genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the in vivo function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a s elf‐cleaved inducible CreER ( s CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver Npr3‐sCreER and fibroblast driver Col1a2‐sCreER , and compared them with conventional Npr3‐CreER and Col1a2‐CreER, respectively. For easy‐to‐recombine alleles such as R26‐tdTomato , there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as R26‐Confetti , R26‐LZLT , R26‐GFP , or VEGFR2 flox / flox alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective in vivo genomic modification for studying gene function in specific cell lineages. Synopsis A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination. sCreER exhibits temporal control property by tamoxifen. sCreER self‐cleaves and converts to Cre for robust gene deletion. sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus. Graphical Abstract Methodological development of the inducible Cre recombinase system for in vivo genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31943281</pmid><doi>10.15252/embj.2019102675</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5278-5522</orcidid><orcidid>https://orcid.org/0000-0002-1616-3643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-02, Vol.39 (4), p.e102675-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7024834
source SpringerOpen
subjects Alleles
Animals
Cell Lineage
cell lineages
Clonal deletion
Cre recombinase
Cre‐loxP
Deoxyribonucleic acid
DNA
Efficiency
EMBO16
EMBO22
Female
Fibroblasts
Flox
Gene Deletion
Gene Expression
Gene manipulation
Genetic engineering
genetic manipulation
Genotypes
Integrases - genetics
Integrases - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Protein transport
Recombination
Recombination, Genetic
Regeneration
Resource
Switches
Tamoxifen
Tissue engineering
title Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20a%20self%E2%80%90cleaved%20inducible%20Cre%20recombinase%20for%20efficient%20temporal%20genetic%20manipulation&rft.jtitle=The%20EMBO%20journal&rft.au=Tian,%20Xueying&rft.date=2020-02-17&rft.volume=39&rft.issue=4&rft.spage=e102675&rft.epage=n/a&rft.pages=e102675-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019102675&rft_dat=%3Cproquest_C6C%3E2355783618%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355783618&rft_id=info:pmid/31943281&rfr_iscdi=true