Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation
Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for in vivo genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the in vivo function of specific genes in organ development, tissue re...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2020-02, Vol.39 (4), p.e102675-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e102675 |
container_title | The EMBO journal |
container_volume | 39 |
creator | Tian, Xueying He, Lingjuan Liu, Kuo Pu, Wenjuan Zhao, Huan Li, Yan Liu, Xiuxiu Tang, Muxue Sun, Ruilin Fei, Jian Ji, Yong Qiao, Zengyong Lui, Kathy O Zhou, Bin |
description | Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for
in vivo
genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the
in vivo
function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a
s
elf‐cleaved inducible CreER (
s
CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver
Npr3‐sCreER
and fibroblast driver
Col1a2‐sCreER
, and compared them with conventional
Npr3‐CreER
and
Col1a2‐CreER,
respectively. For easy‐to‐recombine alleles such as
R26‐tdTomato
, there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as
R26‐Confetti
,
R26‐LZLT
,
R26‐GFP
, or
VEGFR2
flox
/
flox
alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective
in vivo
genomic modification for studying gene function in specific cell lineages.
Synopsis
A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination.
sCreER exhibits temporal control property by tamoxifen.
sCreER self‐cleaves and converts to Cre for robust gene deletion.
sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus.
Graphical Abstract
Methodological development of the inducible Cre recombinase system for
in vivo
genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems. |
doi_str_mv | 10.15252/embj.2019102675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7024834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355783618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</originalsourceid><addsrcrecordid>eNqFkc1qFTEYhoNY7Gl135UEXE-b_8mACHroj6XiRtchk_nmNIeZ5JjMVLrzErzGXknTntrahbgKJO_75IEXoQNKDqlkkh3B2K4PGaENJUzV8gVaUKFIxUgtX6JFuaOVoLrZRXs5rwkhUtf0FdrltBGcabpA3SkESHbyMeDYY4szDP3Nr99uAHsFHfahm51vB8DLBDiBi2Prg82A-5gw9L13HsKEJxg3MdkBrwpv8g6PNvjNPNyTX6Od3g4Z3jyc--j7yfG35Vl18fX08_LjReUkbWTV2q7hPaNEupqCbaWoFahOWs1Z23SEcM2IVVzp8tBYRZVlAlqieO1EIwTfRx-23M3cjtC5IlaUzCb50aZrE603z1-CvzSreGVqwoTmd4B3D4AUf8yQJ7OOcwrF2TAuZa25orqkyDblUsw5Qf_4AyXmfhdzt4t52qVU3v5t9lj4M0QJvN8GfvoBrv8LNMdfPp0_49NtPZdmWEF6Ev-n0y2hwazF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355783618</pqid></control><display><type>article</type><title>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</title><source>SpringerOpen</source><creator>Tian, Xueying ; He, Lingjuan ; Liu, Kuo ; Pu, Wenjuan ; Zhao, Huan ; Li, Yan ; Liu, Xiuxiu ; Tang, Muxue ; Sun, Ruilin ; Fei, Jian ; Ji, Yong ; Qiao, Zengyong ; Lui, Kathy O ; Zhou, Bin</creator><creatorcontrib>Tian, Xueying ; He, Lingjuan ; Liu, Kuo ; Pu, Wenjuan ; Zhao, Huan ; Li, Yan ; Liu, Xiuxiu ; Tang, Muxue ; Sun, Ruilin ; Fei, Jian ; Ji, Yong ; Qiao, Zengyong ; Lui, Kathy O ; Zhou, Bin</creatorcontrib><description>Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for
in vivo
genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the
in vivo
function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a
s
elf‐cleaved inducible CreER (
s
CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver
Npr3‐sCreER
and fibroblast driver
Col1a2‐sCreER
, and compared them with conventional
Npr3‐CreER
and
Col1a2‐CreER,
respectively. For easy‐to‐recombine alleles such as
R26‐tdTomato
, there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as
R26‐Confetti
,
R26‐LZLT
,
R26‐GFP
, or
VEGFR2
flox
/
flox
alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective
in vivo
genomic modification for studying gene function in specific cell lineages.
Synopsis
A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination.
sCreER exhibits temporal control property by tamoxifen.
sCreER self‐cleaves and converts to Cre for robust gene deletion.
sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus.
Graphical Abstract
Methodological development of the inducible Cre recombinase system for
in vivo
genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019102675</identifier><identifier>PMID: 31943281</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alleles ; Animals ; Cell Lineage ; cell lineages ; Clonal deletion ; Cre recombinase ; Cre‐loxP ; Deoxyribonucleic acid ; DNA ; Efficiency ; EMBO16 ; EMBO22 ; Female ; Fibroblasts ; Flox ; Gene Deletion ; Gene Expression ; Gene manipulation ; Genetic engineering ; genetic manipulation ; Genotypes ; Integrases - genetics ; Integrases - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Protein transport ; Recombination ; Recombination, Genetic ; Regeneration ; Resource ; Switches ; Tamoxifen ; Tissue engineering</subject><ispartof>The EMBO journal, 2020-02, Vol.39 (4), p.e102675-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</citedby><cites>FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</cites><orcidid>0000-0001-5278-5522 ; 0000-0002-1616-3643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024834/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024834/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2019102675$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Xueying</creatorcontrib><creatorcontrib>He, Lingjuan</creatorcontrib><creatorcontrib>Liu, Kuo</creatorcontrib><creatorcontrib>Pu, Wenjuan</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Xiuxiu</creatorcontrib><creatorcontrib>Tang, Muxue</creatorcontrib><creatorcontrib>Sun, Ruilin</creatorcontrib><creatorcontrib>Fei, Jian</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Qiao, Zengyong</creatorcontrib><creatorcontrib>Lui, Kathy O</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><title>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for
in vivo
genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the
in vivo
function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a
s
elf‐cleaved inducible CreER (
s
CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver
Npr3‐sCreER
and fibroblast driver
Col1a2‐sCreER
, and compared them with conventional
Npr3‐CreER
and
Col1a2‐CreER,
respectively. For easy‐to‐recombine alleles such as
R26‐tdTomato
, there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as
R26‐Confetti
,
R26‐LZLT
,
R26‐GFP
, or
VEGFR2
flox
/
flox
alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective
in vivo
genomic modification for studying gene function in specific cell lineages.
Synopsis
A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination.
sCreER exhibits temporal control property by tamoxifen.
sCreER self‐cleaves and converts to Cre for robust gene deletion.
sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus.
Graphical Abstract
Methodological development of the inducible Cre recombinase system for
in vivo
genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.</description><subject>Alleles</subject><subject>Animals</subject><subject>Cell Lineage</subject><subject>cell lineages</subject><subject>Clonal deletion</subject><subject>Cre recombinase</subject><subject>Cre‐loxP</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Efficiency</subject><subject>EMBO16</subject><subject>EMBO22</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Flox</subject><subject>Gene Deletion</subject><subject>Gene Expression</subject><subject>Gene manipulation</subject><subject>Genetic engineering</subject><subject>genetic manipulation</subject><subject>Genotypes</subject><subject>Integrases - genetics</subject><subject>Integrases - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Protein transport</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><subject>Regeneration</subject><subject>Resource</subject><subject>Switches</subject><subject>Tamoxifen</subject><subject>Tissue engineering</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1qFTEYhoNY7Gl135UEXE-b_8mACHroj6XiRtchk_nmNIeZ5JjMVLrzErzGXknTntrahbgKJO_75IEXoQNKDqlkkh3B2K4PGaENJUzV8gVaUKFIxUgtX6JFuaOVoLrZRXs5rwkhUtf0FdrltBGcabpA3SkESHbyMeDYY4szDP3Nr99uAHsFHfahm51vB8DLBDiBi2Prg82A-5gw9L13HsKEJxg3MdkBrwpv8g6PNvjNPNyTX6Od3g4Z3jyc--j7yfG35Vl18fX08_LjReUkbWTV2q7hPaNEupqCbaWoFahOWs1Z23SEcM2IVVzp8tBYRZVlAlqieO1EIwTfRx-23M3cjtC5IlaUzCb50aZrE603z1-CvzSreGVqwoTmd4B3D4AUf8yQJ7OOcwrF2TAuZa25orqkyDblUsw5Qf_4AyXmfhdzt4t52qVU3v5t9lj4M0QJvN8GfvoBrv8LNMdfPp0_49NtPZdmWEF6Ev-n0y2hwazF</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Tian, Xueying</creator><creator>He, Lingjuan</creator><creator>Liu, Kuo</creator><creator>Pu, Wenjuan</creator><creator>Zhao, Huan</creator><creator>Li, Yan</creator><creator>Liu, Xiuxiu</creator><creator>Tang, Muxue</creator><creator>Sun, Ruilin</creator><creator>Fei, Jian</creator><creator>Ji, Yong</creator><creator>Qiao, Zengyong</creator><creator>Lui, Kathy O</creator><creator>Zhou, Bin</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5278-5522</orcidid><orcidid>https://orcid.org/0000-0002-1616-3643</orcidid></search><sort><creationdate>20200217</creationdate><title>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</title><author>Tian, Xueying ; He, Lingjuan ; Liu, Kuo ; Pu, Wenjuan ; Zhao, Huan ; Li, Yan ; Liu, Xiuxiu ; Tang, Muxue ; Sun, Ruilin ; Fei, Jian ; Ji, Yong ; Qiao, Zengyong ; Lui, Kathy O ; Zhou, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-bad93f2105c71eab5476e6d5a832b9d003820a63684769a616a24eb0637c49443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Cell Lineage</topic><topic>cell lineages</topic><topic>Clonal deletion</topic><topic>Cre recombinase</topic><topic>Cre‐loxP</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Efficiency</topic><topic>EMBO16</topic><topic>EMBO22</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Flox</topic><topic>Gene Deletion</topic><topic>Gene Expression</topic><topic>Gene manipulation</topic><topic>Genetic engineering</topic><topic>genetic manipulation</topic><topic>Genotypes</topic><topic>Integrases - genetics</topic><topic>Integrases - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Protein transport</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><topic>Regeneration</topic><topic>Resource</topic><topic>Switches</topic><topic>Tamoxifen</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xueying</creatorcontrib><creatorcontrib>He, Lingjuan</creatorcontrib><creatorcontrib>Liu, Kuo</creatorcontrib><creatorcontrib>Pu, Wenjuan</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Xiuxiu</creatorcontrib><creatorcontrib>Tang, Muxue</creatorcontrib><creatorcontrib>Sun, Ruilin</creatorcontrib><creatorcontrib>Fei, Jian</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Qiao, Zengyong</creatorcontrib><creatorcontrib>Lui, Kathy O</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Xueying</au><au>He, Lingjuan</au><au>Liu, Kuo</au><au>Pu, Wenjuan</au><au>Zhao, Huan</au><au>Li, Yan</au><au>Liu, Xiuxiu</au><au>Tang, Muxue</au><au>Sun, Ruilin</au><au>Fei, Jian</au><au>Ji, Yong</au><au>Qiao, Zengyong</au><au>Lui, Kathy O</au><au>Zhou, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><spage>e102675</spage><epage>n/a</epage><pages>e102675-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Site‐specific recombinase‐mediated genetic technology, such as inducible Cre‐loxP recombination (CreER), is widely used for
in vivo
genetic manipulation with temporal control. The Cre‐loxP technology improves our understanding on the
in vivo
function of specific genes in organ development, tissue regeneration, and disease progression. However, inducible CreER often remains inefficient in gene deletion. In order to improve the efficiency of gene manipulation, we generated a
s
elf‐cleaved inducible CreER (
s
CreER) that switches inducible CreER into a constitutively active Cre by itself. We generated endocardial driver
Npr3‐sCreER
and fibroblast driver
Col1a2‐sCreER
, and compared them with conventional
Npr3‐CreER
and
Col1a2‐CreER,
respectively. For easy‐to‐recombine alleles such as
R26‐tdTomato
, there was no significant difference in recombination efficiency between sCreER and the conventional CreER. However, for alleles that were relatively inert for recombination such as
R26‐Confetti
,
R26‐LZLT
,
R26‐GFP
, or
VEGFR2
flox
/
flox
alleles, sCreER showed a significantly higher efficiency in recombination compared with conventional CreER in endocardial cells or fibroblasts. Compared with conventional CreER, sCreER significantly enhances the efficiency of recombination to induce gene expression or gene deletion, allowing temporal yet effective
in vivo
genomic modification for studying gene function in specific cell lineages.
Synopsis
A self‐cleaved CreER (sCreER) is generated by placing two loxP sites on the flanks of ER cassette. After tamoxifen (Tam) induction, sCreER protein is transported into the nucleus where it cleaves loxP flanked ER, converting sCreER DNA into Cre genotype. Thus, the Cre recombinase can be switched from an inducible form to a constitutively active form. sCreER significantly enhances the efficiency of gene manipulation on some alleles that are relatively inert for recombination.
sCreER exhibits temporal control property by tamoxifen.
sCreER self‐cleaves and converts to Cre for robust gene deletion.
sCreER is more efficient than CreER in recombination of a refractory or less susceptible target locus.
Graphical Abstract
Methodological development of the inducible Cre recombinase system for
in vivo
genetic manipulation, based on self‐conversion of an inducible to a constitutively active Cre form, results in higher recombination efficiency than conventional Cre‐based systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31943281</pmid><doi>10.15252/embj.2019102675</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5278-5522</orcidid><orcidid>https://orcid.org/0000-0002-1616-3643</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2020-02, Vol.39 (4), p.e102675-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7024834 |
source | SpringerOpen |
subjects | Alleles Animals Cell Lineage cell lineages Clonal deletion Cre recombinase Cre‐loxP Deoxyribonucleic acid DNA Efficiency EMBO16 EMBO22 Female Fibroblasts Flox Gene Deletion Gene Expression Gene manipulation Genetic engineering genetic manipulation Genotypes Integrases - genetics Integrases - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Protein transport Recombination Recombination, Genetic Regeneration Resource Switches Tamoxifen Tissue engineering |
title | Generation of a self‐cleaved inducible Cre recombinase for efficient temporal genetic manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20a%20self%E2%80%90cleaved%20inducible%20Cre%20recombinase%20for%20efficient%20temporal%20genetic%20manipulation&rft.jtitle=The%20EMBO%20journal&rft.au=Tian,%20Xueying&rft.date=2020-02-17&rft.volume=39&rft.issue=4&rft.spage=e102675&rft.epage=n/a&rft.pages=e102675-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019102675&rft_dat=%3Cproquest_C6C%3E2355783618%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355783618&rft_id=info:pmid/31943281&rfr_iscdi=true |