Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells
Over half of cutaneous melanoma tumors have BRAF V600E/K mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50–60% of melanoma cell lines with vemurafenib resistance acquired in vitro show ac...
Gespeichert in:
Veröffentlicht in: | Oncogene 2020-02, Vol.39 (7), p.1466-1483 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1483 |
---|---|
container_issue | 7 |
container_start_page | 1466 |
container_title | Oncogene |
container_volume | 39 |
creator | Misek, S. A. Appleton, K. M. Dexheimer, T. S. Lisabeth, E. M. Lo, R. S. Larsen, S. D. Gallo, K. A. Neubig, R. R. |
description | Over half of cutaneous melanoma tumors have BRAF
V600E/K
mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50–60% of melanoma cell lines with vemurafenib resistance acquired in vitro show activation of RhoA family GTPases. In BRAFi-resistant melanoma cell lines and tumors, activation of RhoA is correlated with decreased expression of melanocyte lineage genes. Using a machine learning approach, we built gene expression-based models to predict drug sensitivity for 265 common anticancer compounds. We then projected these signatures onto the collection of TCGA cutaneous melanoma and found that poorly differentiated tumors were predicted to have increased sensitivity to multiple Rho kinase (ROCK) inhibitors. Two transcriptional effectors downstream of Rho, MRTF and YAP1, are activated in the Rho
High
BRAFi-resistant cell lines, and resistant cells are more sensitive to inhibition of these transcriptional mechanisms. Taken together, these results support the concept of targeting Rho-regulated gene transcription pathways as a promising therapeutic approach to restore sensitivity to BRAFi-resistant tumors or as a combination therapy to prevent the onset of drug resistance. |
doi_str_mv | 10.1038/s41388-019-1074-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7024013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613887715</galeid><sourcerecordid>A613887715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-7a333a63531b24b86ac3022c1c3deebd1f553cd1a26830402a6f055bfdf1e6c13</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhgdR7G31B7iRATduUvOdmY1wW1oVCkLRpYRM5mRuykxyTeYK_nszTL1aUckikPOc93zkraoXBJ8TzJo3mRPWNAiTFhGsOCKPqg3hSiIhWv642uBWYNRSRk-q05zvMMaqxfRpdcKIFC0V7ab6cruLaILemxn6OvshmNGHod6nOMUZcn1xu72ufdj5zs8x1Qmyz7MJFspj3QPqvXOQIMyrwgSjCXEytYVxzM-qJ86MGZ7f32fV5-urT5fv0c3Hdx8utzfICilmpAxjzEgmGOko7xppLMOUWmJZD9D1xAnBbE8MlQ3DHFMjHRaic70jIC1hZ9XbVXd_6MowtrSTzKj3yU8mfdfReP0wEvxOD_GbVphyTFgReH0vkOLXA-RZTz4vI5gA8ZA1ZQTTViq-1Hr1B3oXD6msrVBl94pJxvl_KSa4wgIX9EgNZgTtg4ulO7uU1lu5_K1SRBTq_C9UOT1M3sYAzpf3BwlkTbAp5pzAHTdBsF6co1fn6OIcvThHL2O9_H2Fx4yfVikAXYFcQmGA9Guif6v-ADVbzOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354705067</pqid></control><display><type>article</type><title>Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Misek, S. A. ; Appleton, K. M. ; Dexheimer, T. S. ; Lisabeth, E. M. ; Lo, R. S. ; Larsen, S. D. ; Gallo, K. A. ; Neubig, R. R.</creator><creatorcontrib>Misek, S. A. ; Appleton, K. M. ; Dexheimer, T. S. ; Lisabeth, E. M. ; Lo, R. S. ; Larsen, S. D. ; Gallo, K. A. ; Neubig, R. R.</creatorcontrib><description>Over half of cutaneous melanoma tumors have BRAF
V600E/K
mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50–60% of melanoma cell lines with vemurafenib resistance acquired in vitro show activation of RhoA family GTPases. In BRAFi-resistant melanoma cell lines and tumors, activation of RhoA is correlated with decreased expression of melanocyte lineage genes. Using a machine learning approach, we built gene expression-based models to predict drug sensitivity for 265 common anticancer compounds. We then projected these signatures onto the collection of TCGA cutaneous melanoma and found that poorly differentiated tumors were predicted to have increased sensitivity to multiple Rho kinase (ROCK) inhibitors. Two transcriptional effectors downstream of Rho, MRTF and YAP1, are activated in the Rho
High
BRAFi-resistant cell lines, and resistant cells are more sensitive to inhibition of these transcriptional mechanisms. Taken together, these results support the concept of targeting Rho-regulated gene transcription pathways as a promising therapeutic approach to restore sensitivity to BRAFi-resistant tumors or as a combination therapy to prevent the onset of drug resistance.</description><identifier>ISSN: 0950-9232</identifier><identifier>ISSN: 1476-5594</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-019-1074-1</identifier><identifier>PMID: 31659259</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/95 ; 14/63 ; 38 ; 38/39 ; 38/77 ; 38/90 ; 38/91 ; 631/67/1059/2326 ; 631/67/1813/1634 ; 82/29 ; Adaptor Proteins, Signal Transducing - metabolism ; Apoptosis ; Cancer ; Care and treatment ; Cell activation ; Cell Biology ; Cell Dedifferentiation - drug effects ; Cell differentiation ; Cell Line, Tumor ; Cell lines ; Drug resistance ; Enzyme Activation - drug effects ; G proteins ; Gene expression ; Genes ; Genetic transcription ; Health aspects ; Human Genetics ; Humans ; Internal Medicine ; Kinases ; Learning algorithms ; Machine learning ; Medicine ; Medicine & Public Health ; Melanocytes - drug effects ; Melanocytes - pathology ; Melanoma ; Melanoma - pathology ; Oncology ; Protein Kinase Inhibitors - pharmacology ; Proto-Oncogene Proteins B-raf - antagonists & inhibitors ; Rho-associated kinase ; rho-Associated Kinases - metabolism ; RhoA protein ; Signal Transduction - drug effects ; Transcription ; Transcription Factors - metabolism ; Transcription, Genetic - drug effects ; Tumors ; Vemurafenib ; YAP-Signaling Proteins ; Yes-associated protein</subject><ispartof>Oncogene, 2020-02, Vol.39 (7), p.1466-1483</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-7a333a63531b24b86ac3022c1c3deebd1f553cd1a26830402a6f055bfdf1e6c13</citedby><cites>FETCH-LOGICAL-c565t-7a333a63531b24b86ac3022c1c3deebd1f553cd1a26830402a6f055bfdf1e6c13</cites><orcidid>0000-0003-0501-0008 ; 0000-0002-0246-5018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Misek, S. A.</creatorcontrib><creatorcontrib>Appleton, K. M.</creatorcontrib><creatorcontrib>Dexheimer, T. S.</creatorcontrib><creatorcontrib>Lisabeth, E. M.</creatorcontrib><creatorcontrib>Lo, R. S.</creatorcontrib><creatorcontrib>Larsen, S. D.</creatorcontrib><creatorcontrib>Gallo, K. A.</creatorcontrib><creatorcontrib>Neubig, R. R.</creatorcontrib><title>Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Over half of cutaneous melanoma tumors have BRAF
V600E/K
mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50–60% of melanoma cell lines with vemurafenib resistance acquired in vitro show activation of RhoA family GTPases. In BRAFi-resistant melanoma cell lines and tumors, activation of RhoA is correlated with decreased expression of melanocyte lineage genes. Using a machine learning approach, we built gene expression-based models to predict drug sensitivity for 265 common anticancer compounds. We then projected these signatures onto the collection of TCGA cutaneous melanoma and found that poorly differentiated tumors were predicted to have increased sensitivity to multiple Rho kinase (ROCK) inhibitors. Two transcriptional effectors downstream of Rho, MRTF and YAP1, are activated in the Rho
High
BRAFi-resistant cell lines, and resistant cells are more sensitive to inhibition of these transcriptional mechanisms. Taken together, these results support the concept of targeting Rho-regulated gene transcription pathways as a promising therapeutic approach to restore sensitivity to BRAFi-resistant tumors or as a combination therapy to prevent the onset of drug resistance.</description><subject>13/106</subject><subject>13/95</subject><subject>14/63</subject><subject>38</subject><subject>38/39</subject><subject>38/77</subject><subject>38/90</subject><subject>38/91</subject><subject>631/67/1059/2326</subject><subject>631/67/1813/1634</subject><subject>82/29</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell Dedifferentiation - drug effects</subject><subject>Cell differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Drug resistance</subject><subject>Enzyme Activation - drug effects</subject><subject>G proteins</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic transcription</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Melanocytes - drug effects</subject><subject>Melanocytes - pathology</subject><subject>Melanoma</subject><subject>Melanoma - pathology</subject><subject>Oncology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</subject><subject>Rho-associated kinase</subject><subject>rho-Associated Kinases - metabolism</subject><subject>RhoA protein</subject><subject>Signal Transduction - drug effects</subject><subject>Transcription</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Tumors</subject><subject>Vemurafenib</subject><subject>YAP-Signaling Proteins</subject><subject>Yes-associated protein</subject><issn>0950-9232</issn><issn>1476-5594</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk1rFTEUhgdR7G31B7iRATduUvOdmY1wW1oVCkLRpYRM5mRuykxyTeYK_nszTL1aUckikPOc93zkraoXBJ8TzJo3mRPWNAiTFhGsOCKPqg3hSiIhWv642uBWYNRSRk-q05zvMMaqxfRpdcKIFC0V7ab6cruLaILemxn6OvshmNGHod6nOMUZcn1xu72ufdj5zs8x1Qmyz7MJFspj3QPqvXOQIMyrwgSjCXEytYVxzM-qJ86MGZ7f32fV5-urT5fv0c3Hdx8utzfICilmpAxjzEgmGOko7xppLMOUWmJZD9D1xAnBbE8MlQ3DHFMjHRaic70jIC1hZ9XbVXd_6MowtrSTzKj3yU8mfdfReP0wEvxOD_GbVphyTFgReH0vkOLXA-RZTz4vI5gA8ZA1ZQTTViq-1Hr1B3oXD6msrVBl94pJxvl_KSa4wgIX9EgNZgTtg4ulO7uU1lu5_K1SRBTq_C9UOT1M3sYAzpf3BwlkTbAp5pzAHTdBsF6co1fn6OIcvThHL2O9_H2Fx4yfVikAXYFcQmGA9Guif6v-ADVbzOo</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Misek, S. A.</creator><creator>Appleton, K. M.</creator><creator>Dexheimer, T. S.</creator><creator>Lisabeth, E. M.</creator><creator>Lo, R. S.</creator><creator>Larsen, S. D.</creator><creator>Gallo, K. A.</creator><creator>Neubig, R. R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0501-0008</orcidid><orcidid>https://orcid.org/0000-0002-0246-5018</orcidid></search><sort><creationdate>20200213</creationdate><title>Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells</title><author>Misek, S. A. ; Appleton, K. M. ; Dexheimer, T. S. ; Lisabeth, E. M. ; Lo, R. S. ; Larsen, S. D. ; Gallo, K. A. ; Neubig, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-7a333a63531b24b86ac3022c1c3deebd1f553cd1a26830402a6f055bfdf1e6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/106</topic><topic>13/95</topic><topic>14/63</topic><topic>38</topic><topic>38/39</topic><topic>38/77</topic><topic>38/90</topic><topic>38/91</topic><topic>631/67/1059/2326</topic><topic>631/67/1813/1634</topic><topic>82/29</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell Dedifferentiation - drug effects</topic><topic>Cell differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Drug resistance</topic><topic>Enzyme Activation - drug effects</topic><topic>G proteins</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic transcription</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Melanocytes - drug effects</topic><topic>Melanocytes - pathology</topic><topic>Melanoma</topic><topic>Melanoma - pathology</topic><topic>Oncology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</topic><topic>Rho-associated kinase</topic><topic>rho-Associated Kinases - metabolism</topic><topic>RhoA protein</topic><topic>Signal Transduction - drug effects</topic><topic>Transcription</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Tumors</topic><topic>Vemurafenib</topic><topic>YAP-Signaling Proteins</topic><topic>Yes-associated protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misek, S. A.</creatorcontrib><creatorcontrib>Appleton, K. M.</creatorcontrib><creatorcontrib>Dexheimer, T. S.</creatorcontrib><creatorcontrib>Lisabeth, E. M.</creatorcontrib><creatorcontrib>Lo, R. S.</creatorcontrib><creatorcontrib>Larsen, S. D.</creatorcontrib><creatorcontrib>Gallo, K. A.</creatorcontrib><creatorcontrib>Neubig, R. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misek, S. A.</au><au>Appleton, K. M.</au><au>Dexheimer, T. S.</au><au>Lisabeth, E. M.</au><au>Lo, R. S.</au><au>Larsen, S. D.</au><au>Gallo, K. A.</au><au>Neubig, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-02-13</date><risdate>2020</risdate><volume>39</volume><issue>7</issue><spage>1466</spage><epage>1483</epage><pages>1466-1483</pages><issn>0950-9232</issn><issn>1476-5594</issn><eissn>1476-5594</eissn><abstract>Over half of cutaneous melanoma tumors have BRAF
V600E/K
mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50–60% of melanoma cell lines with vemurafenib resistance acquired in vitro show activation of RhoA family GTPases. In BRAFi-resistant melanoma cell lines and tumors, activation of RhoA is correlated with decreased expression of melanocyte lineage genes. Using a machine learning approach, we built gene expression-based models to predict drug sensitivity for 265 common anticancer compounds. We then projected these signatures onto the collection of TCGA cutaneous melanoma and found that poorly differentiated tumors were predicted to have increased sensitivity to multiple Rho kinase (ROCK) inhibitors. Two transcriptional effectors downstream of Rho, MRTF and YAP1, are activated in the Rho
High
BRAFi-resistant cell lines, and resistant cells are more sensitive to inhibition of these transcriptional mechanisms. Taken together, these results support the concept of targeting Rho-regulated gene transcription pathways as a promising therapeutic approach to restore sensitivity to BRAFi-resistant tumors or as a combination therapy to prevent the onset of drug resistance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31659259</pmid><doi>10.1038/s41388-019-1074-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0501-0008</orcidid><orcidid>https://orcid.org/0000-0002-0246-5018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2020-02, Vol.39 (7), p.1466-1483 |
issn | 0950-9232 1476-5594 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7024013 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 13/106 13/95 14/63 38 38/39 38/77 38/90 38/91 631/67/1059/2326 631/67/1813/1634 82/29 Adaptor Proteins, Signal Transducing - metabolism Apoptosis Cancer Care and treatment Cell activation Cell Biology Cell Dedifferentiation - drug effects Cell differentiation Cell Line, Tumor Cell lines Drug resistance Enzyme Activation - drug effects G proteins Gene expression Genes Genetic transcription Health aspects Human Genetics Humans Internal Medicine Kinases Learning algorithms Machine learning Medicine Medicine & Public Health Melanocytes - drug effects Melanocytes - pathology Melanoma Melanoma - pathology Oncology Protein Kinase Inhibitors - pharmacology Proto-Oncogene Proteins B-raf - antagonists & inhibitors Rho-associated kinase rho-Associated Kinases - metabolism RhoA protein Signal Transduction - drug effects Transcription Transcription Factors - metabolism Transcription, Genetic - drug effects Tumors Vemurafenib YAP-Signaling Proteins Yes-associated protein |
title | Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rho-mediated%20signaling%20promotes%20BRAF%20inhibitor%20resistance%20in%20de-differentiated%20melanoma%20cells&rft.jtitle=Oncogene&rft.au=Misek,%20S.%20A.&rft.date=2020-02-13&rft.volume=39&rft.issue=7&rft.spage=1466&rft.epage=1483&rft.pages=1466-1483&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-019-1074-1&rft_dat=%3Cgale_pubme%3EA613887715%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354705067&rft_id=info:pmid/31659259&rft_galeid=A613887715&rfr_iscdi=true |