Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review

With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2020-01, Vol.12 (1), p.238
Hauptverfasser: Verma, Sahil, Sinha-Ray, Sumit, Sinha-Ray, Suman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 238
container_title Polymers
container_volume 12
creator Verma, Sahil
Sinha-Ray, Sumit
Sinha-Ray, Suman
description With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.
doi_str_mv 10.3390/polym12010238
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7023546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343504032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</originalsourceid><addsrcrecordid>eNpdkdFL3jAUxcPYmOJ83OsI7GUvnUlu06Z7GEjx2wRR0I09hjS90bq26ZJU-f77ZfgpuvuSS_LjkHMOIe85-wzQsKPFj9uJC8aZAPWK7AtWQ1FCxV4_2_fIYYy3LE8pq4rXb8ke8KYCxeQ--X0yok3Bx2WdaXu-oVfrsviQsKctBjMNNlIT6Y6yN5hvzEhbk8y4jSlS5wP9ZRIGerWMQ0rDfE3N3NPNihnDcfxCj-kl3g14_468cWaMeLg7D8jPzcmP9ntxdvHttD0-K2ypeCqEkwY6w7CTEpoeO87AWWhE3UlhVW2xK1XlVCNtB06IBnnvwKFSFTaG93BAvj7oLms3YW9xTsGMegnDZMJWezPoly_zcKOv_Z2uc4yyrLLAp51A8H9WjElPQ7TZi5nRr1ELKEGykoHI6Mf_0Fu_hjnb00JKJiSXimeqeKBsTjoGdE-f4Uz_a1K_aDLzH547eKIfe4O_pfObPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550251581</pqid></control><display><type>article</type><title>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Verma, Sahil ; Sinha-Ray, Sumit ; Sinha-Ray, Suman</creator><creatorcontrib>Verma, Sahil ; Sinha-Ray, Sumit ; Sinha-Ray, Suman</creatorcontrib><description>With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym12010238</identifier><identifier>PMID: 31963805</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Carbon fibers ; Carbon nanotubes ; Catalysis ; Ceramics ; Electrical resistivity ; Electrocatalysts ; Electrodes ; Electronic structure ; Electrospinning ; Energy ; Energy conversion ; Energy sources ; Fossil fuels ; Fuel cells ; High temperature ; Hydrogen ; Metals ; Molecular beam epitaxy ; Nanofibers ; Nanomaterials ; Phosphides ; Production methods ; Renewable resources ; Review ; Substrates ; Transition metals ; Water splitting</subject><ispartof>Polymers, 2020-01, Vol.12 (1), p.238</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</citedby><cites>FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</cites><orcidid>0000-0003-3090-2075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023546/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023546/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31963805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Sahil</creatorcontrib><creatorcontrib>Sinha-Ray, Sumit</creatorcontrib><creatorcontrib>Sinha-Ray, Suman</creatorcontrib><title>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.</description><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Ceramics</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electronic structure</subject><subject>Electrospinning</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy sources</subject><subject>Fossil fuels</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Metals</subject><subject>Molecular beam epitaxy</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Phosphides</subject><subject>Production methods</subject><subject>Renewable resources</subject><subject>Review</subject><subject>Substrates</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFL3jAUxcPYmOJ83OsI7GUvnUlu06Z7GEjx2wRR0I09hjS90bq26ZJU-f77ZfgpuvuSS_LjkHMOIe85-wzQsKPFj9uJC8aZAPWK7AtWQ1FCxV4_2_fIYYy3LE8pq4rXb8ke8KYCxeQ--X0yok3Bx2WdaXu-oVfrsviQsKctBjMNNlIT6Y6yN5hvzEhbk8y4jSlS5wP9ZRIGerWMQ0rDfE3N3NPNihnDcfxCj-kl3g14_468cWaMeLg7D8jPzcmP9ntxdvHttD0-K2ypeCqEkwY6w7CTEpoeO87AWWhE3UlhVW2xK1XlVCNtB06IBnnvwKFSFTaG93BAvj7oLms3YW9xTsGMegnDZMJWezPoly_zcKOv_Z2uc4yyrLLAp51A8H9WjElPQ7TZi5nRr1ELKEGykoHI6Mf_0Fu_hjnb00JKJiSXimeqeKBsTjoGdE-f4Uz_a1K_aDLzH547eKIfe4O_pfObPg</recordid><startdate>20200119</startdate><enddate>20200119</enddate><creator>Verma, Sahil</creator><creator>Sinha-Ray, Sumit</creator><creator>Sinha-Ray, Suman</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3090-2075</orcidid></search><sort><creationdate>20200119</creationdate><title>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</title><author>Verma, Sahil ; Sinha-Ray, Sumit ; Sinha-Ray, Suman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Ceramics</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electronic structure</topic><topic>Electrospinning</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy sources</topic><topic>Fossil fuels</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Metals</topic><topic>Molecular beam epitaxy</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Phosphides</topic><topic>Production methods</topic><topic>Renewable resources</topic><topic>Review</topic><topic>Substrates</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Sahil</creatorcontrib><creatorcontrib>Sinha-Ray, Sumit</creatorcontrib><creatorcontrib>Sinha-Ray, Suman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Sahil</au><au>Sinha-Ray, Sumit</au><au>Sinha-Ray, Suman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2020-01-19</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>238</spage><pages>238-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31963805</pmid><doi>10.3390/polym12010238</doi><orcidid>https://orcid.org/0000-0003-3090-2075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2020-01, Vol.12 (1), p.238
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7023546
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Carbon
Carbon fibers
Carbon nanotubes
Catalysis
Ceramics
Electrical resistivity
Electrocatalysts
Electrodes
Electronic structure
Electrospinning
Energy
Energy conversion
Energy sources
Fossil fuels
Fuel cells
High temperature
Hydrogen
Metals
Molecular beam epitaxy
Nanofibers
Nanomaterials
Phosphides
Production methods
Renewable resources
Review
Substrates
Transition metals
Water splitting
title Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20CNF%20Supported%20Ceramics%20as%20Electrochemical%20Catalysts%20for%20Water%20Splitting%20and%20Fuel%20Cell:%20A%20Review&rft.jtitle=Polymers&rft.au=Verma,%20Sahil&rft.date=2020-01-19&rft.volume=12&rft.issue=1&rft.spage=238&rft.pages=238-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym12010238&rft_dat=%3Cproquest_pubme%3E2343504032%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550251581&rft_id=info:pmid/31963805&rfr_iscdi=true