Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review
With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume r...
Gespeichert in:
Veröffentlicht in: | Polymers 2020-01, Vol.12 (1), p.238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 238 |
container_title | Polymers |
container_volume | 12 |
creator | Verma, Sahil Sinha-Ray, Sumit Sinha-Ray, Suman |
description | With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts. |
doi_str_mv | 10.3390/polym12010238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7023546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343504032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</originalsourceid><addsrcrecordid>eNpdkdFL3jAUxcPYmOJ83OsI7GUvnUlu06Z7GEjx2wRR0I09hjS90bq26ZJU-f77ZfgpuvuSS_LjkHMOIe85-wzQsKPFj9uJC8aZAPWK7AtWQ1FCxV4_2_fIYYy3LE8pq4rXb8ke8KYCxeQ--X0yok3Bx2WdaXu-oVfrsviQsKctBjMNNlIT6Y6yN5hvzEhbk8y4jSlS5wP9ZRIGerWMQ0rDfE3N3NPNihnDcfxCj-kl3g14_468cWaMeLg7D8jPzcmP9ntxdvHttD0-K2ypeCqEkwY6w7CTEpoeO87AWWhE3UlhVW2xK1XlVCNtB06IBnnvwKFSFTaG93BAvj7oLms3YW9xTsGMegnDZMJWezPoly_zcKOv_Z2uc4yyrLLAp51A8H9WjElPQ7TZi5nRr1ELKEGykoHI6Mf_0Fu_hjnb00JKJiSXimeqeKBsTjoGdE-f4Uz_a1K_aDLzH547eKIfe4O_pfObPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550251581</pqid></control><display><type>article</type><title>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Verma, Sahil ; Sinha-Ray, Sumit ; Sinha-Ray, Suman</creator><creatorcontrib>Verma, Sahil ; Sinha-Ray, Sumit ; Sinha-Ray, Suman</creatorcontrib><description>With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym12010238</identifier><identifier>PMID: 31963805</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Carbon fibers ; Carbon nanotubes ; Catalysis ; Ceramics ; Electrical resistivity ; Electrocatalysts ; Electrodes ; Electronic structure ; Electrospinning ; Energy ; Energy conversion ; Energy sources ; Fossil fuels ; Fuel cells ; High temperature ; Hydrogen ; Metals ; Molecular beam epitaxy ; Nanofibers ; Nanomaterials ; Phosphides ; Production methods ; Renewable resources ; Review ; Substrates ; Transition metals ; Water splitting</subject><ispartof>Polymers, 2020-01, Vol.12 (1), p.238</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</citedby><cites>FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</cites><orcidid>0000-0003-3090-2075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023546/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023546/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31963805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Sahil</creatorcontrib><creatorcontrib>Sinha-Ray, Sumit</creatorcontrib><creatorcontrib>Sinha-Ray, Suman</creatorcontrib><title>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.</description><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Ceramics</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electronic structure</subject><subject>Electrospinning</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy sources</subject><subject>Fossil fuels</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Metals</subject><subject>Molecular beam epitaxy</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Phosphides</subject><subject>Production methods</subject><subject>Renewable resources</subject><subject>Review</subject><subject>Substrates</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFL3jAUxcPYmOJ83OsI7GUvnUlu06Z7GEjx2wRR0I09hjS90bq26ZJU-f77ZfgpuvuSS_LjkHMOIe85-wzQsKPFj9uJC8aZAPWK7AtWQ1FCxV4_2_fIYYy3LE8pq4rXb8ke8KYCxeQ--X0yok3Bx2WdaXu-oVfrsviQsKctBjMNNlIT6Y6yN5hvzEhbk8y4jSlS5wP9ZRIGerWMQ0rDfE3N3NPNihnDcfxCj-kl3g14_468cWaMeLg7D8jPzcmP9ntxdvHttD0-K2ypeCqEkwY6w7CTEpoeO87AWWhE3UlhVW2xK1XlVCNtB06IBnnvwKFSFTaG93BAvj7oLms3YW9xTsGMegnDZMJWezPoly_zcKOv_Z2uc4yyrLLAp51A8H9WjElPQ7TZi5nRr1ELKEGykoHI6Mf_0Fu_hjnb00JKJiSXimeqeKBsTjoGdE-f4Uz_a1K_aDLzH547eKIfe4O_pfObPg</recordid><startdate>20200119</startdate><enddate>20200119</enddate><creator>Verma, Sahil</creator><creator>Sinha-Ray, Sumit</creator><creator>Sinha-Ray, Suman</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3090-2075</orcidid></search><sort><creationdate>20200119</creationdate><title>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</title><author>Verma, Sahil ; Sinha-Ray, Sumit ; Sinha-Ray, Suman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-2f5a3ba0eb5539deb103fc3927b52c87ceb486f895cb3f229e1df3fe886e9a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Ceramics</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electronic structure</topic><topic>Electrospinning</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy sources</topic><topic>Fossil fuels</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Metals</topic><topic>Molecular beam epitaxy</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Phosphides</topic><topic>Production methods</topic><topic>Renewable resources</topic><topic>Review</topic><topic>Substrates</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Sahil</creatorcontrib><creatorcontrib>Sinha-Ray, Sumit</creatorcontrib><creatorcontrib>Sinha-Ray, Suman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Sahil</au><au>Sinha-Ray, Sumit</au><au>Sinha-Ray, Suman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2020-01-19</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>238</spage><pages>238-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31963805</pmid><doi>10.3390/polym12010238</doi><orcidid>https://orcid.org/0000-0003-3090-2075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2020-01, Vol.12 (1), p.238 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7023546 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Carbon Carbon fibers Carbon nanotubes Catalysis Ceramics Electrical resistivity Electrocatalysts Electrodes Electronic structure Electrospinning Energy Energy conversion Energy sources Fossil fuels Fuel cells High temperature Hydrogen Metals Molecular beam epitaxy Nanofibers Nanomaterials Phosphides Production methods Renewable resources Review Substrates Transition metals Water splitting |
title | Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20CNF%20Supported%20Ceramics%20as%20Electrochemical%20Catalysts%20for%20Water%20Splitting%20and%20Fuel%20Cell:%20A%20Review&rft.jtitle=Polymers&rft.au=Verma,%20Sahil&rft.date=2020-01-19&rft.volume=12&rft.issue=1&rft.spage=238&rft.pages=238-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym12010238&rft_dat=%3Cproquest_pubme%3E2343504032%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550251581&rft_id=info:pmid/31963805&rfr_iscdi=true |