Removing a single neuron in a vertebrate brain forever abolishes an essential behavior

The giant Mauthner (M) cell is the largest neuron known in the vertebrate brain. It has enabled major breakthroughs in neuroscience but its ultimate function remains surprisingly unclear: An actual survival value of M cell-mediated escapes has never been supported experimentally and ablating the cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (6), p.3254-3260
Hauptverfasser: Hecker, Alexander, Schulze, Wolfram, Oster, Jakob, Richter, David O., Schuster, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3260
container_issue 6
container_start_page 3254
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Hecker, Alexander
Schulze, Wolfram
Oster, Jakob
Richter, David O.
Schuster, Stefan
description The giant Mauthner (M) cell is the largest neuron known in the vertebrate brain. It has enabled major breakthroughs in neuroscience but its ultimate function remains surprisingly unclear: An actual survival value of M cell-mediated escapes has never been supported experimentally and ablating the cell repeatedly failed to eliminate all rapid escapes, suggesting that escapes can equally well be driven by smaller neurons. Here we applied techniques to simultaneously measure escape performance and the state of the giant M axon over an extended period following ablation of its soma. We discovered that the axon survives remarkably long and remains still fully capable of driving rapid escape behavior. By unilaterally removing one of the two M axons and comparing escapes in the same individual that could or could not recruit an M axon, we show that the giant M axon is essential for rapid escapes and that its loss means that rapid escapes are also lost forever. This allowed us to directly test the survival value of the M cellmediated escapes and to show that the absence of this giant neuron directly affects survival in encounters with a natural predator. These findings not only offer a surprising solution to an old puzzle but demonstrate that even complex brains can trust vital functions to individual neurons. Our findings suggest that mechanisms must have evolved in parallel with the unique significance of these neurons to keep their axons alive and connected.
doi_str_mv 10.1073/pnas.1918578117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928775</jstor_id><sourcerecordid>26928775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-4be636af8eb7b46840897cb3eefa953170a2c4895e97246bc96b5b764dbc84363</originalsourceid><addsrcrecordid>eNpdkc2LFDEQxYMo7uzq2ZPS4MVL71a-k4sgi67CgiDqNSS91TsZepIx6R7wvzfDrOPHJQWvfnlU1SPkBYVLCppf7ZKvl9RSI7WhVD8iKwqW9kpYeExWAEz3RjBxRs5r3QCAlQaekjPOAKgEvSLfv-A272O673xXW5mwS7iUnLqYmrTHMmMofsauvU0ac8Emdj7kKdY11s6nDmvFNEc_dQHXfh9zeUaejH6q-PyhXpBvH95_vf7Y336--XT97rYfJNi5FwEVV340GHQQyggwVg-BI47eSk41eDYIYyVazYQKg1VBBq3EXRiM4IpfkLdH390Stng3tDGKn9yuxK0vP1320f3bSXHt7vPeaWCMGmgGbx4MSv6xYJ3dNtYBp8knzEt1jMvD1YQ0DX39H7rJS0ltvQMlDLPc6kZdHamh5FoLjqdhKLhDZu6QmfuTWfvx6u8dTvzvkBrw8ghs6pzLqc-UZUZryX8BfmqdRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354829397</pqid></control><display><type>article</type><title>Removing a single neuron in a vertebrate brain forever abolishes an essential behavior</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hecker, Alexander ; Schulze, Wolfram ; Oster, Jakob ; Richter, David O. ; Schuster, Stefan</creator><creatorcontrib>Hecker, Alexander ; Schulze, Wolfram ; Oster, Jakob ; Richter, David O. ; Schuster, Stefan</creatorcontrib><description>The giant Mauthner (M) cell is the largest neuron known in the vertebrate brain. It has enabled major breakthroughs in neuroscience but its ultimate function remains surprisingly unclear: An actual survival value of M cell-mediated escapes has never been supported experimentally and ablating the cell repeatedly failed to eliminate all rapid escapes, suggesting that escapes can equally well be driven by smaller neurons. Here we applied techniques to simultaneously measure escape performance and the state of the giant M axon over an extended period following ablation of its soma. We discovered that the axon survives remarkably long and remains still fully capable of driving rapid escape behavior. By unilaterally removing one of the two M axons and comparing escapes in the same individual that could or could not recruit an M axon, we show that the giant M axon is essential for rapid escapes and that its loss means that rapid escapes are also lost forever. This allowed us to directly test the survival value of the M cellmediated escapes and to show that the absence of this giant neuron directly affects survival in encounters with a natural predator. These findings not only offer a surprising solution to an old puzzle but demonstrate that even complex brains can trust vital functions to individual neurons. Our findings suggest that mechanisms must have evolved in parallel with the unique significance of these neurons to keep their axons alive and connected.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1918578117</identifier><identifier>PMID: 32001507</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Animals ; Axons ; Axons - physiology ; Biological Sciences ; Brain ; Cell survival ; Embryo, Nonmammalian - physiology ; Escape behavior ; Escape Reaction - physiology ; Larva - physiology ; Nervous system ; Nervous System - growth &amp; development ; Neurons ; Neurons - cytology ; Neurons - physiology ; Survival ; Survival value ; Vertebrates ; Zebrafish</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (6), p.3254-3260</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 11, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-4be636af8eb7b46840897cb3eefa953170a2c4895e97246bc96b5b764dbc84363</citedby><cites>FETCH-LOGICAL-c509t-4be636af8eb7b46840897cb3eefa953170a2c4895e97246bc96b5b764dbc84363</cites><orcidid>0000-0002-6537-6055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928775$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928775$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32001507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hecker, Alexander</creatorcontrib><creatorcontrib>Schulze, Wolfram</creatorcontrib><creatorcontrib>Oster, Jakob</creatorcontrib><creatorcontrib>Richter, David O.</creatorcontrib><creatorcontrib>Schuster, Stefan</creatorcontrib><title>Removing a single neuron in a vertebrate brain forever abolishes an essential behavior</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The giant Mauthner (M) cell is the largest neuron known in the vertebrate brain. It has enabled major breakthroughs in neuroscience but its ultimate function remains surprisingly unclear: An actual survival value of M cell-mediated escapes has never been supported experimentally and ablating the cell repeatedly failed to eliminate all rapid escapes, suggesting that escapes can equally well be driven by smaller neurons. Here we applied techniques to simultaneously measure escape performance and the state of the giant M axon over an extended period following ablation of its soma. We discovered that the axon survives remarkably long and remains still fully capable of driving rapid escape behavior. By unilaterally removing one of the two M axons and comparing escapes in the same individual that could or could not recruit an M axon, we show that the giant M axon is essential for rapid escapes and that its loss means that rapid escapes are also lost forever. This allowed us to directly test the survival value of the M cellmediated escapes and to show that the absence of this giant neuron directly affects survival in encounters with a natural predator. These findings not only offer a surprising solution to an old puzzle but demonstrate that even complex brains can trust vital functions to individual neurons. Our findings suggest that mechanisms must have evolved in parallel with the unique significance of these neurons to keep their axons alive and connected.</description><subject>Ablation</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cell survival</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Escape behavior</subject><subject>Escape Reaction - physiology</subject><subject>Larva - physiology</subject><subject>Nervous system</subject><subject>Nervous System - growth &amp; development</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Survival</subject><subject>Survival value</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2LFDEQxYMo7uzq2ZPS4MVL71a-k4sgi67CgiDqNSS91TsZepIx6R7wvzfDrOPHJQWvfnlU1SPkBYVLCppf7ZKvl9RSI7WhVD8iKwqW9kpYeExWAEz3RjBxRs5r3QCAlQaekjPOAKgEvSLfv-A272O673xXW5mwS7iUnLqYmrTHMmMofsauvU0ac8Emdj7kKdY11s6nDmvFNEc_dQHXfh9zeUaejH6q-PyhXpBvH95_vf7Y336--XT97rYfJNi5FwEVV340GHQQyggwVg-BI47eSk41eDYIYyVazYQKg1VBBq3EXRiM4IpfkLdH390Stng3tDGKn9yuxK0vP1320f3bSXHt7vPeaWCMGmgGbx4MSv6xYJ3dNtYBp8knzEt1jMvD1YQ0DX39H7rJS0ltvQMlDLPc6kZdHamh5FoLjqdhKLhDZu6QmfuTWfvx6u8dTvzvkBrw8ghs6pzLqc-UZUZryX8BfmqdRQ</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Hecker, Alexander</creator><creator>Schulze, Wolfram</creator><creator>Oster, Jakob</creator><creator>Richter, David O.</creator><creator>Schuster, Stefan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6537-6055</orcidid></search><sort><creationdate>20200211</creationdate><title>Removing a single neuron in a vertebrate brain forever abolishes an essential behavior</title><author>Hecker, Alexander ; Schulze, Wolfram ; Oster, Jakob ; Richter, David O. ; Schuster, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-4be636af8eb7b46840897cb3eefa953170a2c4895e97246bc96b5b764dbc84363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cell survival</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Escape behavior</topic><topic>Escape Reaction - physiology</topic><topic>Larva - physiology</topic><topic>Nervous system</topic><topic>Nervous System - growth &amp; development</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Survival</topic><topic>Survival value</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hecker, Alexander</creatorcontrib><creatorcontrib>Schulze, Wolfram</creatorcontrib><creatorcontrib>Oster, Jakob</creatorcontrib><creatorcontrib>Richter, David O.</creatorcontrib><creatorcontrib>Schuster, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hecker, Alexander</au><au>Schulze, Wolfram</au><au>Oster, Jakob</au><au>Richter, David O.</au><au>Schuster, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removing a single neuron in a vertebrate brain forever abolishes an essential behavior</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-11</date><risdate>2020</risdate><volume>117</volume><issue>6</issue><spage>3254</spage><epage>3260</epage><pages>3254-3260</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The giant Mauthner (M) cell is the largest neuron known in the vertebrate brain. It has enabled major breakthroughs in neuroscience but its ultimate function remains surprisingly unclear: An actual survival value of M cell-mediated escapes has never been supported experimentally and ablating the cell repeatedly failed to eliminate all rapid escapes, suggesting that escapes can equally well be driven by smaller neurons. Here we applied techniques to simultaneously measure escape performance and the state of the giant M axon over an extended period following ablation of its soma. We discovered that the axon survives remarkably long and remains still fully capable of driving rapid escape behavior. By unilaterally removing one of the two M axons and comparing escapes in the same individual that could or could not recruit an M axon, we show that the giant M axon is essential for rapid escapes and that its loss means that rapid escapes are also lost forever. This allowed us to directly test the survival value of the M cellmediated escapes and to show that the absence of this giant neuron directly affects survival in encounters with a natural predator. These findings not only offer a surprising solution to an old puzzle but demonstrate that even complex brains can trust vital functions to individual neurons. Our findings suggest that mechanisms must have evolved in parallel with the unique significance of these neurons to keep their axons alive and connected.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32001507</pmid><doi>10.1073/pnas.1918578117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6537-6055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (6), p.3254-3260
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022180
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
Animals
Axons
Axons - physiology
Biological Sciences
Brain
Cell survival
Embryo, Nonmammalian - physiology
Escape behavior
Escape Reaction - physiology
Larva - physiology
Nervous system
Nervous System - growth & development
Neurons
Neurons - cytology
Neurons - physiology
Survival
Survival value
Vertebrates
Zebrafish
title Removing a single neuron in a vertebrate brain forever abolishes an essential behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removing%20a%20single%20neuron%20in%20a%20vertebrate%20brain%20forever%20abolishes%20an%20essential%20behavior&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hecker,%20Alexander&rft.date=2020-02-11&rft.volume=117&rft.issue=6&rft.spage=3254&rft.epage=3260&rft.pages=3254-3260&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1918578117&rft_dat=%3Cjstor_pubme%3E26928775%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354829397&rft_id=info:pmid/32001507&rft_jstor_id=26928775&rfr_iscdi=true