The Nernst effect in Corbino geometry
We study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contribut...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (6), p.2846-2851 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2851 |
---|---|
container_issue | 6 |
container_start_page | 2846 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Kavokin, A. V. Altshuler, B. L. Sharapov, S. G. Grigoryev, P. S. Varlamov, A. A. |
description | We study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contributions to the Nernst current in the conventional geometry. The magnetization currents, also referred to as the edge currents, are independent on the conductivity of the sample which is why they can be conveniently described within the thermodynamic approach. They can be related to the Landau thermodynamic potential for an infinite system. We demonstrate that the observable manifestation of this, purely thermodynamic, Nernst effect consists in the strong oscillations of the magnetic field measured in the center of the disk as a function of the external field. The oscillations depend on the temperature difference at the edges of the disk. Dirac fermions and 2D electrons with a parabolic spectrum are characterized by oscillations of different phase and frequency. We predict qualitatively different power dependencies of the magnitude of the Nernst signal on the chemical potential for normal and Dirac carriers. |
doi_str_mv | 10.1073/pnas.1916567117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928728</jstor_id><sourcerecordid>26928728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9f5973364c56969b5c1ca2d0814ba1a1bab62dd700f61dd1ca11a841e21db0063</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EglI4cwJFQkhc0s44jh1fkFDFJlVwKWfLSZw2VRsXO0Hqv8dVS1lOc3jfvFkeIRcIAwSRDFeN9gOUyFMuEMUB6SFIjDmTcEh6AFTEGaPshJx6PwcAmWZwTE4SlJJyRnvkZjIz0atxjW8jU1WmaKO6iUbW5XVjo6mxS9O69Rk5qvTCm_Nd7ZP3x4fJ6Dkevz29jO7HccFY0saySqVIEs6KlEsu87TAQtMSMmS5Ro25zjktSwFQcSzLICLqjKGhWOYAPOmTu63vqsuXpixM0zq9UCtXL7VbK6tr9Vdp6pma2k8lgFLkEAxudwbOfnTGt2pZ-8IsFroxtvOKJiyj4V9CBvT6Hzq3nWvCeYFKA5ZKmgVquKUKZ713ptovg6A2EahNBOongtBx9fuGPf_98wBcboG5b63b65SHeSKM_AJq54p0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354825928</pqid></control><display><type>article</type><title>The Nernst effect in Corbino geometry</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kavokin, A. V. ; Altshuler, B. L. ; Sharapov, S. G. ; Grigoryev, P. S. ; Varlamov, A. A.</creator><creatorcontrib>Kavokin, A. V. ; Altshuler, B. L. ; Sharapov, S. G. ; Grigoryev, P. S. ; Varlamov, A. A.</creatorcontrib><description>We study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contributions to the Nernst current in the conventional geometry. The magnetization currents, also referred to as the edge currents, are independent on the conductivity of the sample which is why they can be conveniently described within the thermodynamic approach. They can be related to the Landau thermodynamic potential for an infinite system. We demonstrate that the observable manifestation of this, purely thermodynamic, Nernst effect consists in the strong oscillations of the magnetic field measured in the center of the disk as a function of the external field. The oscillations depend on the temperature difference at the edges of the disk. Dirac fermions and 2D electrons with a parabolic spectrum are characterized by oscillations of different phase and frequency. We predict qualitatively different power dependencies of the magnitude of the Nernst signal on the chemical potential for normal and Dirac carriers.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1916567117</identifier><identifier>PMID: 31992642</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemical potential ; Fermions ; Geometry ; Magnetic fields ; Magnetization ; Nernst-Ettingshausen effect ; Organic chemistry ; Oscillations ; Physical Sciences ; Temperature gradients</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (6), p.2846-2851</ispartof><rights>Copyright National Academy of Sciences Feb 11, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9f5973364c56969b5c1ca2d0814ba1a1bab62dd700f61dd1ca11a841e21db0063</citedby><cites>FETCH-LOGICAL-c443t-9f5973364c56969b5c1ca2d0814ba1a1bab62dd700f61dd1ca11a841e21db0063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928728$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928728$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kavokin, A. V.</creatorcontrib><creatorcontrib>Altshuler, B. L.</creatorcontrib><creatorcontrib>Sharapov, S. G.</creatorcontrib><creatorcontrib>Grigoryev, P. S.</creatorcontrib><creatorcontrib>Varlamov, A. A.</creatorcontrib><title>The Nernst effect in Corbino geometry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contributions to the Nernst current in the conventional geometry. The magnetization currents, also referred to as the edge currents, are independent on the conductivity of the sample which is why they can be conveniently described within the thermodynamic approach. They can be related to the Landau thermodynamic potential for an infinite system. We demonstrate that the observable manifestation of this, purely thermodynamic, Nernst effect consists in the strong oscillations of the magnetic field measured in the center of the disk as a function of the external field. The oscillations depend on the temperature difference at the edges of the disk. Dirac fermions and 2D electrons with a parabolic spectrum are characterized by oscillations of different phase and frequency. We predict qualitatively different power dependencies of the magnitude of the Nernst signal on the chemical potential for normal and Dirac carriers.</description><subject>Chemical potential</subject><subject>Fermions</subject><subject>Geometry</subject><subject>Magnetic fields</subject><subject>Magnetization</subject><subject>Nernst-Ettingshausen effect</subject><subject>Organic chemistry</subject><subject>Oscillations</subject><subject>Physical Sciences</subject><subject>Temperature gradients</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQhS0EglI4cwJFQkhc0s44jh1fkFDFJlVwKWfLSZw2VRsXO0Hqv8dVS1lOc3jfvFkeIRcIAwSRDFeN9gOUyFMuEMUB6SFIjDmTcEh6AFTEGaPshJx6PwcAmWZwTE4SlJJyRnvkZjIz0atxjW8jU1WmaKO6iUbW5XVjo6mxS9O69Rk5qvTCm_Nd7ZP3x4fJ6Dkevz29jO7HccFY0saySqVIEs6KlEsu87TAQtMSMmS5Ro25zjktSwFQcSzLICLqjKGhWOYAPOmTu63vqsuXpixM0zq9UCtXL7VbK6tr9Vdp6pma2k8lgFLkEAxudwbOfnTGt2pZ-8IsFroxtvOKJiyj4V9CBvT6Hzq3nWvCeYFKA5ZKmgVquKUKZ713ptovg6A2EahNBOongtBx9fuGPf_98wBcboG5b63b65SHeSKM_AJq54p0</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Kavokin, A. V.</creator><creator>Altshuler, B. L.</creator><creator>Sharapov, S. G.</creator><creator>Grigoryev, P. S.</creator><creator>Varlamov, A. A.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200211</creationdate><title>The Nernst effect in Corbino geometry</title><author>Kavokin, A. V. ; Altshuler, B. L. ; Sharapov, S. G. ; Grigoryev, P. S. ; Varlamov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9f5973364c56969b5c1ca2d0814ba1a1bab62dd700f61dd1ca11a841e21db0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical potential</topic><topic>Fermions</topic><topic>Geometry</topic><topic>Magnetic fields</topic><topic>Magnetization</topic><topic>Nernst-Ettingshausen effect</topic><topic>Organic chemistry</topic><topic>Oscillations</topic><topic>Physical Sciences</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavokin, A. V.</creatorcontrib><creatorcontrib>Altshuler, B. L.</creatorcontrib><creatorcontrib>Sharapov, S. G.</creatorcontrib><creatorcontrib>Grigoryev, P. S.</creatorcontrib><creatorcontrib>Varlamov, A. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavokin, A. V.</au><au>Altshuler, B. L.</au><au>Sharapov, S. G.</au><au>Grigoryev, P. S.</au><au>Varlamov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nernst effect in Corbino geometry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-11</date><risdate>2020</risdate><volume>117</volume><issue>6</issue><spage>2846</spage><epage>2851</epage><pages>2846-2851</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contributions to the Nernst current in the conventional geometry. The magnetization currents, also referred to as the edge currents, are independent on the conductivity of the sample which is why they can be conveniently described within the thermodynamic approach. They can be related to the Landau thermodynamic potential for an infinite system. We demonstrate that the observable manifestation of this, purely thermodynamic, Nernst effect consists in the strong oscillations of the magnetic field measured in the center of the disk as a function of the external field. The oscillations depend on the temperature difference at the edges of the disk. Dirac fermions and 2D electrons with a parabolic spectrum are characterized by oscillations of different phase and frequency. We predict qualitatively different power dependencies of the magnitude of the Nernst signal on the chemical potential for normal and Dirac carriers.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31992642</pmid><doi>10.1073/pnas.1916567117</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (6), p.2846-2851 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022160 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Chemical potential Fermions Geometry Magnetic fields Magnetization Nernst-Ettingshausen effect Organic chemistry Oscillations Physical Sciences Temperature gradients |
title | The Nernst effect in Corbino geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nernst%20effect%20in%20Corbino%20geometry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kavokin,%20A.%20V.&rft.date=2020-02-11&rft.volume=117&rft.issue=6&rft.spage=2846&rft.epage=2851&rft.pages=2846-2851&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1916567117&rft_dat=%3Cjstor_pubme%3E26928728%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354825928&rft_id=info:pmid/31992642&rft_jstor_id=26928728&rfr_iscdi=true |