Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences
Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connecti...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.2540, Article 2540 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2540 |
container_title | Scientific reports |
container_volume | 10 |
creator | Renteria, Carlos Liu, Yuan-Zhi Chaney, Eric J. Barkalifa, Ronit Sengupta, Parijat Boppart, Stephen A. |
description | Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties. |
doi_str_mv | 10.1038/s41598-020-59227-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7018813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354702950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c44939ca4857a5ace8fb21c8846fc9e3af42084aa4a68541d72ae4d0aa81f2343</originalsourceid><addsrcrecordid>eNp9kU9PFTEUxRujEYJ8ARemiRs3g_3LdDYm5CFKQmThE5fNpXNnKMy0z3YGfd-ePh4iurCL9ibn19N7ewh5zdkBZ9K8z4rrxlRMsEo3QtSVfkZ2BVO6ElKI50_qHbKf8zUrS4tG8eYl2ZGCaWWM2CW_jtcBRu_oMoG78aGnR0Mfk5-uRtrFRJd-xOoC0nojfcE5xQBDKaafMd3QRQwB3eRv_bSmc94w332L1YnHoaXnq8m7Qp-O0CO9KEKkX_HHjMFhfkVedDBk3H8498i3k4_Lxefq7PzT6eLorHKqVlPZVSMbB8roGjQ4NN2l4M4Yddi5BiV0SjCjABQcGq14WwtA1TIAwzshldwjH7a-q_lyxNZhmBIMdpX8WKayEbz9Wwn-yvbx1taMG8NlMXj3YJBi6T1PdvTZ4TBAwDhnK6TWpcVG1QV9-w96HedUPuyeUjUTjWaFElvKpZhzwu6xGc7sJlu7zdaWbO19tlaXS2-ejvF45XeSBZBbIBcp9Jj-vP0f2zspgbD3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354702950</pqid></control><display><type>article</type><title>Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Renteria, Carlos ; Liu, Yuan-Zhi ; Chaney, Eric J. ; Barkalifa, Ronit ; Sengupta, Parijat ; Boppart, Stephen A.</creator><creatorcontrib>Renteria, Carlos ; Liu, Yuan-Zhi ; Chaney, Eric J. ; Barkalifa, Ronit ; Sengupta, Parijat ; Boppart, Stephen A.</creatorcontrib><description>Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59227-5</identifier><identifier>PMID: 32054882</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/35 ; 14/63 ; 59 ; 631/114/1314 ; 631/114/1564 ; 639/705/1042 ; Action Potentials - physiology ; Algorithms ; Animals ; Calcium ; Calcium - metabolism ; Cells, Cultured ; Correlation coefficient ; Firing pattern ; Hippocampus ; Hippocampus - diagnostic imaging ; Hippocampus - physiology ; Humanities and Social Sciences ; Mice ; multidisciplinary ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Neural networks ; Neuroimaging ; Neurons - physiology ; Optical Imaging - methods ; Science ; Science (multidisciplinary) ; Statistical analysis ; Wavelet transforms</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.2540, Article 2540</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c44939ca4857a5ace8fb21c8846fc9e3af42084aa4a68541d72ae4d0aa81f2343</citedby><cites>FETCH-LOGICAL-c474t-c44939ca4857a5ace8fb21c8846fc9e3af42084aa4a68541d72ae4d0aa81f2343</cites><orcidid>0000-0002-3596-5799 ; 0000-0002-9386-5630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32054882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Renteria, Carlos</creatorcontrib><creatorcontrib>Liu, Yuan-Zhi</creatorcontrib><creatorcontrib>Chaney, Eric J.</creatorcontrib><creatorcontrib>Barkalifa, Ronit</creatorcontrib><creatorcontrib>Sengupta, Parijat</creatorcontrib><creatorcontrib>Boppart, Stephen A.</creatorcontrib><title>Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.</description><subject>13</subject><subject>14</subject><subject>14/35</subject><subject>14/63</subject><subject>59</subject><subject>631/114/1314</subject><subject>631/114/1564</subject><subject>639/705/1042</subject><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Correlation coefficient</subject><subject>Firing pattern</subject><subject>Hippocampus</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons - physiology</subject><subject>Optical Imaging - methods</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical analysis</subject><subject>Wavelet transforms</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9PFTEUxRujEYJ8ARemiRs3g_3LdDYm5CFKQmThE5fNpXNnKMy0z3YGfd-ePh4iurCL9ibn19N7ewh5zdkBZ9K8z4rrxlRMsEo3QtSVfkZ2BVO6ElKI50_qHbKf8zUrS4tG8eYl2ZGCaWWM2CW_jtcBRu_oMoG78aGnR0Mfk5-uRtrFRJd-xOoC0nojfcE5xQBDKaafMd3QRQwB3eRv_bSmc94w332L1YnHoaXnq8m7Qp-O0CO9KEKkX_HHjMFhfkVedDBk3H8498i3k4_Lxefq7PzT6eLorHKqVlPZVSMbB8roGjQ4NN2l4M4Yddi5BiV0SjCjABQcGq14WwtA1TIAwzshldwjH7a-q_lyxNZhmBIMdpX8WKayEbz9Wwn-yvbx1taMG8NlMXj3YJBi6T1PdvTZ4TBAwDhnK6TWpcVG1QV9-w96HedUPuyeUjUTjWaFElvKpZhzwu6xGc7sJlu7zdaWbO19tlaXS2-ejvF45XeSBZBbIBcp9Jj-vP0f2zspgbD3</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Renteria, Carlos</creator><creator>Liu, Yuan-Zhi</creator><creator>Chaney, Eric J.</creator><creator>Barkalifa, Ronit</creator><creator>Sengupta, Parijat</creator><creator>Boppart, Stephen A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3596-5799</orcidid><orcidid>https://orcid.org/0000-0002-9386-5630</orcidid></search><sort><creationdate>20200213</creationdate><title>Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences</title><author>Renteria, Carlos ; Liu, Yuan-Zhi ; Chaney, Eric J. ; Barkalifa, Ronit ; Sengupta, Parijat ; Boppart, Stephen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c44939ca4857a5ace8fb21c8846fc9e3af42084aa4a68541d72ae4d0aa81f2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>14</topic><topic>14/35</topic><topic>14/63</topic><topic>59</topic><topic>631/114/1314</topic><topic>631/114/1564</topic><topic>639/705/1042</topic><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Correlation coefficient</topic><topic>Firing pattern</topic><topic>Hippocampus</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons - physiology</topic><topic>Optical Imaging - methods</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renteria, Carlos</creatorcontrib><creatorcontrib>Liu, Yuan-Zhi</creatorcontrib><creatorcontrib>Chaney, Eric J.</creatorcontrib><creatorcontrib>Barkalifa, Ronit</creatorcontrib><creatorcontrib>Sengupta, Parijat</creatorcontrib><creatorcontrib>Boppart, Stephen A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renteria, Carlos</au><au>Liu, Yuan-Zhi</au><au>Chaney, Eric J.</au><au>Barkalifa, Ronit</au><au>Sengupta, Parijat</au><au>Boppart, Stephen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-13</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>2540</spage><pages>2540-</pages><artnum>2540</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32054882</pmid><doi>10.1038/s41598-020-59227-5</doi><orcidid>https://orcid.org/0000-0002-3596-5799</orcidid><orcidid>https://orcid.org/0000-0002-9386-5630</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.2540, Article 2540 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7018813 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 13 14 14/35 14/63 59 631/114/1314 631/114/1564 639/705/1042 Action Potentials - physiology Algorithms Animals Calcium Calcium - metabolism Cells, Cultured Correlation coefficient Firing pattern Hippocampus Hippocampus - diagnostic imaging Hippocampus - physiology Humanities and Social Sciences Mice multidisciplinary Nerve Net - diagnostic imaging Nerve Net - physiology Neural networks Neuroimaging Neurons - physiology Optical Imaging - methods Science Science (multidisciplinary) Statistical analysis Wavelet transforms |
title | Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Tracking%20Algorithm%20for%20Time-Varying%20Neuronal%20Network%20Connectivity%20using%20Wide-Field%20Optical%20Image%20Video%20Sequences&rft.jtitle=Scientific%20reports&rft.au=Renteria,%20Carlos&rft.date=2020-02-13&rft.volume=10&rft.issue=1&rft.spage=2540&rft.pages=2540-&rft.artnum=2540&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59227-5&rft_dat=%3Cproquest_pubme%3E2354702950%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354702950&rft_id=info:pmid/32054882&rfr_iscdi=true |