Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo

Recent studies suggest that Src family kinase (SFK) plays important roles in systemic sclerosis and pulmonary fibrosis. However, how SFKs contributed to the pathogenesis of liver fibrosis remains largely unknown. Here, we investigated the role of Fyn, a member of SFK, in hepatic stellate cell (HSC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2020-02, Vol.11 (2), p.118, Article 118
Hauptverfasser: Du, Guifang, Wang, Jing, Zhang, Ting, Ding, Qiang, Jia, Xiaodong, Zhao, Xueke, Dong, Jinke, Yang, Xinrui, Lu, Shanshan, Zhang, Cuihong, Liu, Ze, Zeng, Zhen, Safadi, Rifaat, Qi, Ruizhao, Zhao, Xin, Hong, Zhixian, Lu, Yinying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies suggest that Src family kinase (SFK) plays important roles in systemic sclerosis and pulmonary fibrosis. However, how SFKs contributed to the pathogenesis of liver fibrosis remains largely unknown. Here, we investigated the role of Fyn, a member of SFK, in hepatic stellate cell (HSC) activation and liver fibrosis, and evaluated the anti-fibrotic effects of Saracatinib, a clinically proven safe Fyn inhibitor. Fyn activation was examined in human normal and fibrotic liver tissues. The roles of Fyn in HSC activation and liver fibrosis were evaluated in HSC cell lines by using Fyn siRNA and in Fyn knockout mice. The effects of Saracatinib on HSC activation and liver fibrosis were determined in primary HSCs and CCl 4 induced liver fibrosis model. We showed that the Fyn was activated in the liver of human fibrosis patients. TGF-β induced the activation of Fyn in HSC cell lines. Knockdown of Fyn significantly blocked HSC activation, proliferation, and migration. Fyn deficient mice were resistant to CCl 4 induced liver fibrosis. Saracatinib treatment abolished the activation of Fyn, downregulated the Fyn/FAK/N-WASP signaling in HSCs, and subsequently prevented the activation of HSCs. Saracatinib treatment significantly reduced the severity liver fibrosis induced by CCl 4 in mice. In conclusions, our findings supported the critical role of Fyn in HSC activation and development of liver fibrosis. Fyn could serve as a promising drug target for liver fibrosis treatment. Fyn inhibitor Saracatinib significantly inhibited HSC activation and attenuated liver fibrosis in mouse model.
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-020-2229-2