Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor

Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the litera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2020-02, Vol.77 (3), p.395-413
Hauptverfasser: Park, Heejoon, McGill, S. Lee, Arnold, Adrienne D., Carlson, Ross P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 3
container_start_page 395
container_title Cellular and molecular life sciences : CMLS
container_volume 77
creator Park, Heejoon
McGill, S. Lee
Arnold, Adrienne D.
Carlson, Ross P.
description Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli . cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli , have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed ‘reverse CCR’ (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
doi_str_mv 10.1007/s00018-019-03377-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7015805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352897591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-43e2c5b3858a90a21dcd9e039ae0b72eef8845d22f078a1c273abe9fc98d58cd3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROOPoC7gwJG5cTOkFqhrYmEwmOppMogtN3BEKbs0wqYIWqjrt20vbPe3PwtUlOd85cDmEPGfwmgHINwUAmGqA6QaEkLLZPiCnrOXQaJDs4eG8UvzbCXlSyl2lO8VXj8mJYHKlVqBOyfy54OLTlKL1NOMGc0HqbO5TrGO2fRrDjFVZZywlpHhOQ5wrtUYXsNAJjwxu3a2NN3hObfTUpVhSnoMdqQ-bsLPSNNCx0vkpeTTYseCzwzwjX9-_-3L5obn-dPXx8uK6ca1s56YVyF3XC9Upq8Fy5p3XCEJbhF5yxEGptvOcDyCVZY5LYXvUg9PKd8p5cUbe7nPXSz-hdxjnbEezzmGy-YdJNpi_lRhuzU3aGLn7KehqwKtDQE7fFyyzmUJxOI42YlqK4YIpybVud-jLf9C7tORY16tUx5WWnWaV4nvK5VRKxuH4GAZmV6rZl2pqqeZXqWZbTS_-XONouW-xAmIPlCrVBvLvu_8T-xOSzLGS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352897591</pqid></control><display><type>article</type><title>Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Park, Heejoon ; McGill, S. Lee ; Arnold, Adrienne D. ; Carlson, Ross P.</creator><creatorcontrib>Park, Heejoon ; McGill, S. Lee ; Arnold, Adrienne D. ; Carlson, Ross P.</creatorcontrib><description>Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli . cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli , have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed ‘reverse CCR’ (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-019-03377-x</identifier><identifier>PMID: 31768608</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Business competition ; Carbon ; Carbon - metabolism ; Catabolite repression ; Catabolite Repression - physiology ; Cell Biology ; Consortia ; Division of labor ; E coli ; Escherichia coli - metabolism ; Glucose - metabolism ; Growth rate ; Humans ; Labor ; Life Sciences ; Metabolism ; Metabolites ; Microorganisms ; Monoculture ; Nutrients ; Organic acids ; Overflow ; Phenotype ; Phenotypes ; Pseudomonadaceae - metabolism ; Review ; Substrates</subject><ispartof>Cellular and molecular life sciences : CMLS, 2020-02, Vol.77 (3), p.395-413</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Cellular and Molecular Life Sciences is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-43e2c5b3858a90a21dcd9e039ae0b72eef8845d22f078a1c273abe9fc98d58cd3</citedby><cites>FETCH-LOGICAL-c474t-43e2c5b3858a90a21dcd9e039ae0b72eef8845d22f078a1c273abe9fc98d58cd3</cites><orcidid>0000-0002-2464-7111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015805/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015805/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31768608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Heejoon</creatorcontrib><creatorcontrib>McGill, S. Lee</creatorcontrib><creatorcontrib>Arnold, Adrienne D.</creatorcontrib><creatorcontrib>Carlson, Ross P.</creatorcontrib><title>Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli . cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli , have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed ‘reverse CCR’ (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Business competition</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Catabolite repression</subject><subject>Catabolite Repression - physiology</subject><subject>Cell Biology</subject><subject>Consortia</subject><subject>Division of labor</subject><subject>E coli</subject><subject>Escherichia coli - metabolism</subject><subject>Glucose - metabolism</subject><subject>Growth rate</subject><subject>Humans</subject><subject>Labor</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Monoculture</subject><subject>Nutrients</subject><subject>Organic acids</subject><subject>Overflow</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pseudomonadaceae - metabolism</subject><subject>Review</subject><subject>Substrates</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc2OFCEUhYnROOPoC7gwJG5cTOkFqhrYmEwmOppMogtN3BEKbs0wqYIWqjrt20vbPe3PwtUlOd85cDmEPGfwmgHINwUAmGqA6QaEkLLZPiCnrOXQaJDs4eG8UvzbCXlSyl2lO8VXj8mJYHKlVqBOyfy54OLTlKL1NOMGc0HqbO5TrGO2fRrDjFVZZywlpHhOQ5wrtUYXsNAJjwxu3a2NN3hObfTUpVhSnoMdqQ-bsLPSNNCx0vkpeTTYseCzwzwjX9-_-3L5obn-dPXx8uK6ca1s56YVyF3XC9Upq8Fy5p3XCEJbhF5yxEGptvOcDyCVZY5LYXvUg9PKd8p5cUbe7nPXSz-hdxjnbEezzmGy-YdJNpi_lRhuzU3aGLn7KehqwKtDQE7fFyyzmUJxOI42YlqK4YIpybVud-jLf9C7tORY16tUx5WWnWaV4nvK5VRKxuH4GAZmV6rZl2pqqeZXqWZbTS_-XONouW-xAmIPlCrVBvLvu_8T-xOSzLGS</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Park, Heejoon</creator><creator>McGill, S. Lee</creator><creator>Arnold, Adrienne D.</creator><creator>Carlson, Ross P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2464-7111</orcidid></search><sort><creationdate>20200201</creationdate><title>Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor</title><author>Park, Heejoon ; McGill, S. Lee ; Arnold, Adrienne D. ; Carlson, Ross P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-43e2c5b3858a90a21dcd9e039ae0b72eef8845d22f078a1c273abe9fc98d58cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Business competition</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Catabolite repression</topic><topic>Catabolite Repression - physiology</topic><topic>Cell Biology</topic><topic>Consortia</topic><topic>Division of labor</topic><topic>E coli</topic><topic>Escherichia coli - metabolism</topic><topic>Glucose - metabolism</topic><topic>Growth rate</topic><topic>Humans</topic><topic>Labor</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Monoculture</topic><topic>Nutrients</topic><topic>Organic acids</topic><topic>Overflow</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pseudomonadaceae - metabolism</topic><topic>Review</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Heejoon</creatorcontrib><creatorcontrib>McGill, S. Lee</creatorcontrib><creatorcontrib>Arnold, Adrienne D.</creatorcontrib><creatorcontrib>Carlson, Ross P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Heejoon</au><au>McGill, S. Lee</au><au>Arnold, Adrienne D.</au><au>Carlson, Ross P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>77</volume><issue>3</issue><spage>395</spage><epage>413</epage><pages>395-413</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli . cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli , have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed ‘reverse CCR’ (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31768608</pmid><doi>10.1007/s00018-019-03377-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2464-7111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2020-02, Vol.77 (3), p.395-413
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7015805
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biomedical and Life Sciences
Biomedicine
Business competition
Carbon
Carbon - metabolism
Catabolite repression
Catabolite Repression - physiology
Cell Biology
Consortia
Division of labor
E coli
Escherichia coli - metabolism
Glucose - metabolism
Growth rate
Humans
Labor
Life Sciences
Metabolism
Metabolites
Microorganisms
Monoculture
Nutrients
Organic acids
Overflow
Phenotype
Phenotypes
Pseudomonadaceae - metabolism
Review
Substrates
title Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudomonad%20reverse%20carbon%20catabolite%20repression,%20interspecies%20metabolite%20exchange,%20and%20consortial%20division%20of%20labor&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Park,%20Heejoon&rft.date=2020-02-01&rft.volume=77&rft.issue=3&rft.spage=395&rft.epage=413&rft.pages=395-413&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-019-03377-x&rft_dat=%3Cproquest_pubme%3E2352897591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352897591&rft_id=info:pmid/31768608&rfr_iscdi=true