Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice
Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-02, Vol.6 (7), p.eaay5225-eaay5225 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaay5225 |
---|---|
container_issue | 7 |
container_start_page | eaay5225 |
container_title | Science advances |
container_volume | 6 |
creator | Pradhan, Basudev Das, Sonali Li, Jinxin Chowdhury, Farzana Cherusseri, Jayesh Pandey, Deepak Dev, Durjoy Krishnaprasad, Adithi Barrios, Elizabeth Towers, Andrew Gesquiere, Andre Tetard, Laurene Roy, Tania Thomas, Jayan |
description | Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10
AW
and specific detectivity of 4.72 × 10
Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices. |
doi_str_mv | 10.1126/sciadv.aay5225 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7015692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364037006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</originalsourceid><addsrcrecordid>eNpVUU1PJCEUJGY3ama9ejQc9zIjHw3dXDbZmP0wMfGiZ0IDPYN2Q8ujZzMH__u2zmj08nhU1St4KYTOKVlRyuQl2GDcdmXMTjAmjtAp47VYMlE1Xz70J-gM4IEQQispBVXH6IQzooRg6hQ93_clG_ARQglbj010eHqByiZEPG5SSfNlZqGkDK_0KxiDxbCLZgQPeIIQ13j0OW3hMRSPnyYTyzRglwrgdU7_Iu5yGubWjBsfPe5NKcH6b-hrZ3rwZ4dzge5__7q7-ru8uf1zffXzZmkrIcvStZXntvPSmY66lgg-19Y1SnDHJZFVLa2kRAhVKUeJs0o2TcuIIE1TqdrxBfqx9x2ndvDO-jgv1esxh8HknU4m6M9MDBu9TltdEyqkYrPB94NBTk-Th6KHANb3vYk-TaAZlxXhNSFylq72UpsTQPbd-zOU6JfY9D42fYhtHrj4-Ll3-VtI_D_JQJrM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364037006</pqid></control><display><type>article</type><title>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pradhan, Basudev ; Das, Sonali ; Li, Jinxin ; Chowdhury, Farzana ; Cherusseri, Jayesh ; Pandey, Deepak ; Dev, Durjoy ; Krishnaprasad, Adithi ; Barrios, Elizabeth ; Towers, Andrew ; Gesquiere, Andre ; Tetard, Laurene ; Roy, Tania ; Thomas, Jayan</creator><creatorcontrib>Pradhan, Basudev ; Das, Sonali ; Li, Jinxin ; Chowdhury, Farzana ; Cherusseri, Jayesh ; Pandey, Deepak ; Dev, Durjoy ; Krishnaprasad, Adithi ; Barrios, Elizabeth ; Towers, Andrew ; Gesquiere, Andre ; Tetard, Laurene ; Roy, Tania ; Thomas, Jayan</creatorcontrib><description>Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10
AW
and specific detectivity of 4.72 × 10
Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aay5225</identifier><identifier>PMID: 32095529</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Materials Science ; Physical Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2020-02, Vol.6 (7), p.eaay5225-eaay5225</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</citedby><cites>FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</cites><orcidid>0000-0003-1131-8068 ; 0000-0001-9432-0934 ; 0000-0001-5635-6821 ; 0000-0003-3579-6064 ; 0000-0003-3244-6771 ; 0000-0002-3629-7083 ; 0000-0002-0955-1576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015692/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015692/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32095529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Basudev</creatorcontrib><creatorcontrib>Das, Sonali</creatorcontrib><creatorcontrib>Li, Jinxin</creatorcontrib><creatorcontrib>Chowdhury, Farzana</creatorcontrib><creatorcontrib>Cherusseri, Jayesh</creatorcontrib><creatorcontrib>Pandey, Deepak</creatorcontrib><creatorcontrib>Dev, Durjoy</creatorcontrib><creatorcontrib>Krishnaprasad, Adithi</creatorcontrib><creatorcontrib>Barrios, Elizabeth</creatorcontrib><creatorcontrib>Towers, Andrew</creatorcontrib><creatorcontrib>Gesquiere, Andre</creatorcontrib><creatorcontrib>Tetard, Laurene</creatorcontrib><creatorcontrib>Roy, Tania</creatorcontrib><creatorcontrib>Thomas, Jayan</creatorcontrib><title>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10
AW
and specific detectivity of 4.72 × 10
Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.</description><subject>Materials Science</subject><subject>Physical Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PJCEUJGY3ama9ejQc9zIjHw3dXDbZmP0wMfGiZ0IDPYN2Q8ujZzMH__u2zmj08nhU1St4KYTOKVlRyuQl2GDcdmXMTjAmjtAp47VYMlE1Xz70J-gM4IEQQispBVXH6IQzooRg6hQ93_clG_ARQglbj010eHqByiZEPG5SSfNlZqGkDK_0KxiDxbCLZgQPeIIQ13j0OW3hMRSPnyYTyzRglwrgdU7_Iu5yGubWjBsfPe5NKcH6b-hrZ3rwZ4dzge5__7q7-ru8uf1zffXzZmkrIcvStZXntvPSmY66lgg-19Y1SnDHJZFVLa2kRAhVKUeJs0o2TcuIIE1TqdrxBfqx9x2ndvDO-jgv1esxh8HknU4m6M9MDBu9TltdEyqkYrPB94NBTk-Th6KHANb3vYk-TaAZlxXhNSFylq72UpsTQPbd-zOU6JfY9D42fYhtHrj4-Ll3-VtI_D_JQJrM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Pradhan, Basudev</creator><creator>Das, Sonali</creator><creator>Li, Jinxin</creator><creator>Chowdhury, Farzana</creator><creator>Cherusseri, Jayesh</creator><creator>Pandey, Deepak</creator><creator>Dev, Durjoy</creator><creator>Krishnaprasad, Adithi</creator><creator>Barrios, Elizabeth</creator><creator>Towers, Andrew</creator><creator>Gesquiere, Andre</creator><creator>Tetard, Laurene</creator><creator>Roy, Tania</creator><creator>Thomas, Jayan</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1131-8068</orcidid><orcidid>https://orcid.org/0000-0001-9432-0934</orcidid><orcidid>https://orcid.org/0000-0001-5635-6821</orcidid><orcidid>https://orcid.org/0000-0003-3579-6064</orcidid><orcidid>https://orcid.org/0000-0003-3244-6771</orcidid><orcidid>https://orcid.org/0000-0002-3629-7083</orcidid><orcidid>https://orcid.org/0000-0002-0955-1576</orcidid></search><sort><creationdate>20200201</creationdate><title>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</title><author>Pradhan, Basudev ; Das, Sonali ; Li, Jinxin ; Chowdhury, Farzana ; Cherusseri, Jayesh ; Pandey, Deepak ; Dev, Durjoy ; Krishnaprasad, Adithi ; Barrios, Elizabeth ; Towers, Andrew ; Gesquiere, Andre ; Tetard, Laurene ; Roy, Tania ; Thomas, Jayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials Science</topic><topic>Physical Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Basudev</creatorcontrib><creatorcontrib>Das, Sonali</creatorcontrib><creatorcontrib>Li, Jinxin</creatorcontrib><creatorcontrib>Chowdhury, Farzana</creatorcontrib><creatorcontrib>Cherusseri, Jayesh</creatorcontrib><creatorcontrib>Pandey, Deepak</creatorcontrib><creatorcontrib>Dev, Durjoy</creatorcontrib><creatorcontrib>Krishnaprasad, Adithi</creatorcontrib><creatorcontrib>Barrios, Elizabeth</creatorcontrib><creatorcontrib>Towers, Andrew</creatorcontrib><creatorcontrib>Gesquiere, Andre</creatorcontrib><creatorcontrib>Tetard, Laurene</creatorcontrib><creatorcontrib>Roy, Tania</creatorcontrib><creatorcontrib>Thomas, Jayan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Basudev</au><au>Das, Sonali</au><au>Li, Jinxin</au><au>Chowdhury, Farzana</au><au>Cherusseri, Jayesh</au><au>Pandey, Deepak</au><au>Dev, Durjoy</au><au>Krishnaprasad, Adithi</au><au>Barrios, Elizabeth</au><au>Towers, Andrew</au><au>Gesquiere, Andre</au><au>Tetard, Laurene</au><au>Roy, Tania</au><au>Thomas, Jayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>6</volume><issue>7</issue><spage>eaay5225</spage><epage>eaay5225</epage><pages>eaay5225-eaay5225</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10
AW
and specific detectivity of 4.72 × 10
Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>32095529</pmid><doi>10.1126/sciadv.aay5225</doi><orcidid>https://orcid.org/0000-0003-1131-8068</orcidid><orcidid>https://orcid.org/0000-0001-9432-0934</orcidid><orcidid>https://orcid.org/0000-0001-5635-6821</orcidid><orcidid>https://orcid.org/0000-0003-3579-6064</orcidid><orcidid>https://orcid.org/0000-0003-3244-6771</orcidid><orcidid>https://orcid.org/0000-0002-3629-7083</orcidid><orcidid>https://orcid.org/0000-0002-0955-1576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-02, Vol.6 (7), p.eaay5225-eaay5225 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7015692 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Materials Science Physical Sciences SciAdv r-articles |
title | Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20and%20ultrathin%20phototransistors%20and%20photonic%20synapses%20using%20perovskite%20quantum%20dots%20grown%20from%20graphene%20lattice&rft.jtitle=Science%20advances&rft.au=Pradhan,%20Basudev&rft.date=2020-02-01&rft.volume=6&rft.issue=7&rft.spage=eaay5225&rft.epage=eaay5225&rft.pages=eaay5225-eaay5225&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aay5225&rft_dat=%3Cproquest_pubme%3E2364037006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364037006&rft_id=info:pmid/32095529&rfr_iscdi=true |