Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice

Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-02, Vol.6 (7), p.eaay5225-eaay5225
Hauptverfasser: Pradhan, Basudev, Das, Sonali, Li, Jinxin, Chowdhury, Farzana, Cherusseri, Jayesh, Pandey, Deepak, Dev, Durjoy, Krishnaprasad, Adithi, Barrios, Elizabeth, Towers, Andrew, Gesquiere, Andre, Tetard, Laurene, Roy, Tania, Thomas, Jayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaay5225
container_issue 7
container_start_page eaay5225
container_title Science advances
container_volume 6
creator Pradhan, Basudev
Das, Sonali
Li, Jinxin
Chowdhury, Farzana
Cherusseri, Jayesh
Pandey, Deepak
Dev, Durjoy
Krishnaprasad, Adithi
Barrios, Elizabeth
Towers, Andrew
Gesquiere, Andre
Tetard, Laurene
Roy, Tania
Thomas, Jayan
description Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10 AW and specific detectivity of 4.72 × 10 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.
doi_str_mv 10.1126/sciadv.aay5225
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7015692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364037006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</originalsourceid><addsrcrecordid>eNpVUU1PJCEUJGY3ama9ejQc9zIjHw3dXDbZmP0wMfGiZ0IDPYN2Q8ujZzMH__u2zmj08nhU1St4KYTOKVlRyuQl2GDcdmXMTjAmjtAp47VYMlE1Xz70J-gM4IEQQispBVXH6IQzooRg6hQ93_clG_ARQglbj010eHqByiZEPG5SSfNlZqGkDK_0KxiDxbCLZgQPeIIQ13j0OW3hMRSPnyYTyzRglwrgdU7_Iu5yGubWjBsfPe5NKcH6b-hrZ3rwZ4dzge5__7q7-ru8uf1zffXzZmkrIcvStZXntvPSmY66lgg-19Y1SnDHJZFVLa2kRAhVKUeJs0o2TcuIIE1TqdrxBfqx9x2ndvDO-jgv1esxh8HknU4m6M9MDBu9TltdEyqkYrPB94NBTk-Th6KHANb3vYk-TaAZlxXhNSFylq72UpsTQPbd-zOU6JfY9D42fYhtHrj4-Ll3-VtI_D_JQJrM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364037006</pqid></control><display><type>article</type><title>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pradhan, Basudev ; Das, Sonali ; Li, Jinxin ; Chowdhury, Farzana ; Cherusseri, Jayesh ; Pandey, Deepak ; Dev, Durjoy ; Krishnaprasad, Adithi ; Barrios, Elizabeth ; Towers, Andrew ; Gesquiere, Andre ; Tetard, Laurene ; Roy, Tania ; Thomas, Jayan</creator><creatorcontrib>Pradhan, Basudev ; Das, Sonali ; Li, Jinxin ; Chowdhury, Farzana ; Cherusseri, Jayesh ; Pandey, Deepak ; Dev, Durjoy ; Krishnaprasad, Adithi ; Barrios, Elizabeth ; Towers, Andrew ; Gesquiere, Andre ; Tetard, Laurene ; Roy, Tania ; Thomas, Jayan</creatorcontrib><description>Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10 AW and specific detectivity of 4.72 × 10 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aay5225</identifier><identifier>PMID: 32095529</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Materials Science ; Physical Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2020-02, Vol.6 (7), p.eaay5225-eaay5225</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</citedby><cites>FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</cites><orcidid>0000-0003-1131-8068 ; 0000-0001-9432-0934 ; 0000-0001-5635-6821 ; 0000-0003-3579-6064 ; 0000-0003-3244-6771 ; 0000-0002-3629-7083 ; 0000-0002-0955-1576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015692/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015692/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32095529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Basudev</creatorcontrib><creatorcontrib>Das, Sonali</creatorcontrib><creatorcontrib>Li, Jinxin</creatorcontrib><creatorcontrib>Chowdhury, Farzana</creatorcontrib><creatorcontrib>Cherusseri, Jayesh</creatorcontrib><creatorcontrib>Pandey, Deepak</creatorcontrib><creatorcontrib>Dev, Durjoy</creatorcontrib><creatorcontrib>Krishnaprasad, Adithi</creatorcontrib><creatorcontrib>Barrios, Elizabeth</creatorcontrib><creatorcontrib>Towers, Andrew</creatorcontrib><creatorcontrib>Gesquiere, Andre</creatorcontrib><creatorcontrib>Tetard, Laurene</creatorcontrib><creatorcontrib>Roy, Tania</creatorcontrib><creatorcontrib>Thomas, Jayan</creatorcontrib><title>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10 AW and specific detectivity of 4.72 × 10 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.</description><subject>Materials Science</subject><subject>Physical Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PJCEUJGY3ama9ejQc9zIjHw3dXDbZmP0wMfGiZ0IDPYN2Q8ujZzMH__u2zmj08nhU1St4KYTOKVlRyuQl2GDcdmXMTjAmjtAp47VYMlE1Xz70J-gM4IEQQispBVXH6IQzooRg6hQ93_clG_ARQglbj010eHqByiZEPG5SSfNlZqGkDK_0KxiDxbCLZgQPeIIQ13j0OW3hMRSPnyYTyzRglwrgdU7_Iu5yGubWjBsfPe5NKcH6b-hrZ3rwZ4dzge5__7q7-ru8uf1zffXzZmkrIcvStZXntvPSmY66lgg-19Y1SnDHJZFVLa2kRAhVKUeJs0o2TcuIIE1TqdrxBfqx9x2ndvDO-jgv1esxh8HknU4m6M9MDBu9TltdEyqkYrPB94NBTk-Th6KHANb3vYk-TaAZlxXhNSFylq72UpsTQPbd-zOU6JfY9D42fYhtHrj4-Ll3-VtI_D_JQJrM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Pradhan, Basudev</creator><creator>Das, Sonali</creator><creator>Li, Jinxin</creator><creator>Chowdhury, Farzana</creator><creator>Cherusseri, Jayesh</creator><creator>Pandey, Deepak</creator><creator>Dev, Durjoy</creator><creator>Krishnaprasad, Adithi</creator><creator>Barrios, Elizabeth</creator><creator>Towers, Andrew</creator><creator>Gesquiere, Andre</creator><creator>Tetard, Laurene</creator><creator>Roy, Tania</creator><creator>Thomas, Jayan</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1131-8068</orcidid><orcidid>https://orcid.org/0000-0001-9432-0934</orcidid><orcidid>https://orcid.org/0000-0001-5635-6821</orcidid><orcidid>https://orcid.org/0000-0003-3579-6064</orcidid><orcidid>https://orcid.org/0000-0003-3244-6771</orcidid><orcidid>https://orcid.org/0000-0002-3629-7083</orcidid><orcidid>https://orcid.org/0000-0002-0955-1576</orcidid></search><sort><creationdate>20200201</creationdate><title>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</title><author>Pradhan, Basudev ; Das, Sonali ; Li, Jinxin ; Chowdhury, Farzana ; Cherusseri, Jayesh ; Pandey, Deepak ; Dev, Durjoy ; Krishnaprasad, Adithi ; Barrios, Elizabeth ; Towers, Andrew ; Gesquiere, Andre ; Tetard, Laurene ; Roy, Tania ; Thomas, Jayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-db4e3cfe6daf1db0531dbbd8953d3606476c61055949d10dc9688b205088497d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials Science</topic><topic>Physical Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Basudev</creatorcontrib><creatorcontrib>Das, Sonali</creatorcontrib><creatorcontrib>Li, Jinxin</creatorcontrib><creatorcontrib>Chowdhury, Farzana</creatorcontrib><creatorcontrib>Cherusseri, Jayesh</creatorcontrib><creatorcontrib>Pandey, Deepak</creatorcontrib><creatorcontrib>Dev, Durjoy</creatorcontrib><creatorcontrib>Krishnaprasad, Adithi</creatorcontrib><creatorcontrib>Barrios, Elizabeth</creatorcontrib><creatorcontrib>Towers, Andrew</creatorcontrib><creatorcontrib>Gesquiere, Andre</creatorcontrib><creatorcontrib>Tetard, Laurene</creatorcontrib><creatorcontrib>Roy, Tania</creatorcontrib><creatorcontrib>Thomas, Jayan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Basudev</au><au>Das, Sonali</au><au>Li, Jinxin</au><au>Chowdhury, Farzana</au><au>Cherusseri, Jayesh</au><au>Pandey, Deepak</au><au>Dev, Durjoy</au><au>Krishnaprasad, Adithi</au><au>Barrios, Elizabeth</au><au>Towers, Andrew</au><au>Gesquiere, Andre</au><au>Tetard, Laurene</au><au>Roy, Tania</au><au>Thomas, Jayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>6</volume><issue>7</issue><spage>eaay5225</spage><epage>eaay5225</epage><pages>eaay5225-eaay5225</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 10 AW and specific detectivity of 4.72 × 10 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>32095529</pmid><doi>10.1126/sciadv.aay5225</doi><orcidid>https://orcid.org/0000-0003-1131-8068</orcidid><orcidid>https://orcid.org/0000-0001-9432-0934</orcidid><orcidid>https://orcid.org/0000-0001-5635-6821</orcidid><orcidid>https://orcid.org/0000-0003-3579-6064</orcidid><orcidid>https://orcid.org/0000-0003-3244-6771</orcidid><orcidid>https://orcid.org/0000-0002-3629-7083</orcidid><orcidid>https://orcid.org/0000-0002-0955-1576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-02, Vol.6 (7), p.eaay5225-eaay5225
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7015692
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Materials Science
Physical Sciences
SciAdv r-articles
title Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20and%20ultrathin%20phototransistors%20and%20photonic%20synapses%20using%20perovskite%20quantum%20dots%20grown%20from%20graphene%20lattice&rft.jtitle=Science%20advances&rft.au=Pradhan,%20Basudev&rft.date=2020-02-01&rft.volume=6&rft.issue=7&rft.spage=eaay5225&rft.epage=eaay5225&rft.pages=eaay5225-eaay5225&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aay5225&rft_dat=%3Cproquest_pubme%3E2364037006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364037006&rft_id=info:pmid/32095529&rfr_iscdi=true