Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors

Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their bea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2020-01, Vol.17 (162), p.20190580-20190580
Hauptverfasser: Böddeker, Thomas J, Karpitschka, Stefan, Kreis, Christian T, Magdelaine, Quentin, Bäumchen, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20190580
container_issue 162
container_start_page 20190580
container_title Journal of the Royal Society interface
container_volume 17
creator Böddeker, Thomas J
Karpitschka, Stefan
Kreis, Christian T
Magdelaine, Quentin
Bäumchen, Oliver
description Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct measurements of the dynamic forces of motile cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette's position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette's full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.
doi_str_mv 10.1098/rsif.2019.0580
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7014799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338988672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-20abd92169d23017e15374bbb2f80cb1f7ccfb196fb13c65c5194b671fe20bfe3</originalsourceid><addsrcrecordid>eNpVkTtPwzAQxy0EolBYGVFGlhY_kjhekFB5SpVYYGKwbNdujeK4-BJQvz2JWipY7k66u_89fghdEDwlWFTXCbybUkzEFBcVPkAnhOd0UpQlPdzHlRihU4APjBlnRXGMRowIxiljJ-j9btOo4E3mYjI2C1ZBl2ywTQtZbDL49iH4ZpnNVrUKm0UMsVGQGVvXkHUwZPrmFNd-bdvW7lTANhATnKEjp2qw5zs_Rm8P96-zp8n85fF5djufmJzl7YRipReCklIsKMOEW1Iwnmutqauw0cRxY5wmouwNM2VhCiJyXXLiLMXaWTZGN1vddaeDXZh--aRquU4-qLSRUXn5P9P4lVzGL8kxybkQvcDVTiDFz85CK4OH4UbV2NiB7D9Viaoq-5eN0XRb2h8NkKzbjyFYDkTkQEQORORApG-4_LvcvvwXAfsBKXSLKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338988672</pqid></control><display><type>article</type><title>Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors</title><source>MEDLINE</source><source>PubMed Central</source><creator>Böddeker, Thomas J ; Karpitschka, Stefan ; Kreis, Christian T ; Magdelaine, Quentin ; Bäumchen, Oliver</creator><creatorcontrib>Böddeker, Thomas J ; Karpitschka, Stefan ; Kreis, Christian T ; Magdelaine, Quentin ; Bäumchen, Oliver</creatorcontrib><description>Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct measurements of the dynamic forces of motile cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette's position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette's full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2019.0580</identifier><identifier>PMID: 31937233</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Chlamydomonas ; Chlamydomonas reinhardtii ; Flagella ; Hydrodynamics ; Life Sciences–Physics interface ; Swimming</subject><ispartof>Journal of the Royal Society interface, 2020-01, Vol.17 (162), p.20190580-20190580</ispartof><rights>2020 The Authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-20abd92169d23017e15374bbb2f80cb1f7ccfb196fb13c65c5194b671fe20bfe3</citedby><cites>FETCH-LOGICAL-c434t-20abd92169d23017e15374bbb2f80cb1f7ccfb196fb13c65c5194b671fe20bfe3</cites><orcidid>0000-0002-5705-8313 ; 0000-0002-4879-0369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014799/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014799/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31937233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Böddeker, Thomas J</creatorcontrib><creatorcontrib>Karpitschka, Stefan</creatorcontrib><creatorcontrib>Kreis, Christian T</creatorcontrib><creatorcontrib>Magdelaine, Quentin</creatorcontrib><creatorcontrib>Bäumchen, Oliver</creatorcontrib><title>Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct measurements of the dynamic forces of motile cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette's position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette's full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.</description><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Flagella</subject><subject>Hydrodynamics</subject><subject>Life Sciences–Physics interface</subject><subject>Swimming</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkTtPwzAQxy0EolBYGVFGlhY_kjhekFB5SpVYYGKwbNdujeK4-BJQvz2JWipY7k66u_89fghdEDwlWFTXCbybUkzEFBcVPkAnhOd0UpQlPdzHlRihU4APjBlnRXGMRowIxiljJ-j9btOo4E3mYjI2C1ZBl2ywTQtZbDL49iH4ZpnNVrUKm0UMsVGQGVvXkHUwZPrmFNd-bdvW7lTANhATnKEjp2qw5zs_Rm8P96-zp8n85fF5djufmJzl7YRipReCklIsKMOEW1Iwnmutqauw0cRxY5wmouwNM2VhCiJyXXLiLMXaWTZGN1vddaeDXZh--aRquU4-qLSRUXn5P9P4lVzGL8kxybkQvcDVTiDFz85CK4OH4UbV2NiB7D9Viaoq-5eN0XRb2h8NkKzbjyFYDkTkQEQORORApG-4_LvcvvwXAfsBKXSLKA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Böddeker, Thomas J</creator><creator>Karpitschka, Stefan</creator><creator>Kreis, Christian T</creator><creator>Magdelaine, Quentin</creator><creator>Bäumchen, Oliver</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5705-8313</orcidid><orcidid>https://orcid.org/0000-0002-4879-0369</orcidid></search><sort><creationdate>20200101</creationdate><title>Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors</title><author>Böddeker, Thomas J ; Karpitschka, Stefan ; Kreis, Christian T ; Magdelaine, Quentin ; Bäumchen, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-20abd92169d23017e15374bbb2f80cb1f7ccfb196fb13c65c5194b671fe20bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Flagella</topic><topic>Hydrodynamics</topic><topic>Life Sciences–Physics interface</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böddeker, Thomas J</creatorcontrib><creatorcontrib>Karpitschka, Stefan</creatorcontrib><creatorcontrib>Kreis, Christian T</creatorcontrib><creatorcontrib>Magdelaine, Quentin</creatorcontrib><creatorcontrib>Bäumchen, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böddeker, Thomas J</au><au>Karpitschka, Stefan</au><au>Kreis, Christian T</au><au>Magdelaine, Quentin</au><au>Bäumchen, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>17</volume><issue>162</issue><spage>20190580</spage><epage>20190580</epage><pages>20190580-20190580</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct measurements of the dynamic forces of motile cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette's position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette's full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31937233</pmid><doi>10.1098/rsif.2019.0580</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5705-8313</orcidid><orcidid>https://orcid.org/0000-0002-4879-0369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2020-01, Vol.17 (162), p.20190580-20190580
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7014799
source MEDLINE; PubMed Central
subjects Chlamydomonas
Chlamydomonas reinhardtii
Flagella
Hydrodynamics
Life Sciences–Physics interface
Swimming
title Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20force%20measurements%20on%20swimming%20Chlamydomonas%20cells%20using%20micropipette%20force%20sensors&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=B%C3%B6ddeker,%20Thomas%20J&rft.date=2020-01-01&rft.volume=17&rft.issue=162&rft.spage=20190580&rft.epage=20190580&rft.pages=20190580-20190580&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2019.0580&rft_dat=%3Cproquest_pubme%3E2338988672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338988672&rft_id=info:pmid/31937233&rfr_iscdi=true