Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks

The objective is to test automated estimation of active and passive skeletal muscle states using ultrasonic imaging. Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2020-01, Vol.17 (162), p.20190715-20190715
Hauptverfasser: Cunningham, Ryan J, Loram, Ian D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20190715
container_issue 162
container_start_page 20190715
container_title Journal of the Royal Society interface
container_volume 17
creator Cunningham, Ryan J
Loram, Ian D
description The objective is to test automated estimation of active and passive skeletal muscle states using ultrasonic imaging. Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction or generalization of independently varying active and passive states. We use deep learning to investigate the generalizable content of two-dimensional (2D) US muscle images. US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle, were recorded from 32 healthy participants (seven female; ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, drift-free components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous independent variation of passive (joint angle) and active (electromyography) inputs. For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography and joint moment were estimated to accuracy 55 ± 8%, 57 ± 11% and 46 ± 9%, respectively. With 2D US imaging, deep neural networks can encode, in generalizable form, the activity-length-tension state relationship of these muscles. Observation-only, low-power 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalized muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing.
doi_str_mv 10.1098/rsif.2019.0715
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7014797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348236363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-b44023301cfec8a28c600c9eb857ee396fd96d243779ac09dc6046c9a083dd203</originalsourceid><addsrcrecordid>eNpVkbtvFDEQxi1ERB7QUiKXNHv4sbteN0jJKQlIkdJAbfns2csSr334cRE9f3i8STgRuRhr5pvffNKH0EdKVpTI4UtM07hihMoVEbR7g06oaFnT9T17e_gP8hidpvSLEC54171Dx5xKyWjfnaC_lylPs85T8DiMWG9ScCUDTllnSEvrrsza43QPDrJ2eC7JOMD7SS8ab3W0-KKZgwVcXI46heItrsjt5Le4CrAF2GET_H4h1zsV4qHEp5IfQrxP79HRqF2CDy_1DP28uvyx_tbc3F5_X5_fNKbjXW42bUsY54SaEcyg2WB6QoyEzdAJAC770crespYLIbUh0tZ52xupycCtZYSfoa_P3F3ZzGAN-GrYqV2sduMfFfSkXk_8dKe2Ya8Eoa2QogI-vwBi-F0gZTVPyYBz2kMoSTHeDoz39VXp6llqYkgpwng4Q4laolNLdGqJTi3R1YVP_5s7yP9lxR8B_VGZqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348236363</pqid></control><display><type>article</type><title>Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks</title><source>PubMed Central</source><creator>Cunningham, Ryan J ; Loram, Ian D</creator><creatorcontrib>Cunningham, Ryan J ; Loram, Ian D</creatorcontrib><description>The objective is to test automated estimation of active and passive skeletal muscle states using ultrasonic imaging. Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction or generalization of independently varying active and passive states. We use deep learning to investigate the generalizable content of two-dimensional (2D) US muscle images. US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle, were recorded from 32 healthy participants (seven female; ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, drift-free components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous independent variation of passive (joint angle) and active (electromyography) inputs. For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography and joint moment were estimated to accuracy 55 ± 8%, 57 ± 11% and 46 ± 9%, respectively. With 2D US imaging, deep neural networks can encode, in generalizable form, the activity-length-tension state relationship of these muscles. Observation-only, low-power 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalized muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2019.0715</identifier><identifier>PMID: 31992165</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Life Sciences–Engineering interface</subject><ispartof>Journal of the Royal Society interface, 2020-01, Vol.17 (162), p.20190715-20190715</ispartof><rights>2020 The Authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-b44023301cfec8a28c600c9eb857ee396fd96d243779ac09dc6046c9a083dd203</citedby><cites>FETCH-LOGICAL-c535t-b44023301cfec8a28c600c9eb857ee396fd96d243779ac09dc6046c9a083dd203</cites><orcidid>0000-0001-6883-6515 ; 0000-0001-8125-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunningham, Ryan J</creatorcontrib><creatorcontrib>Loram, Ian D</creatorcontrib><title>Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>The objective is to test automated estimation of active and passive skeletal muscle states using ultrasonic imaging. Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction or generalization of independently varying active and passive states. We use deep learning to investigate the generalizable content of two-dimensional (2D) US muscle images. US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle, were recorded from 32 healthy participants (seven female; ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, drift-free components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous independent variation of passive (joint angle) and active (electromyography) inputs. For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography and joint moment were estimated to accuracy 55 ± 8%, 57 ± 11% and 46 ± 9%, respectively. With 2D US imaging, deep neural networks can encode, in generalizable form, the activity-length-tension state relationship of these muscles. Observation-only, low-power 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalized muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing.</description><subject>Life Sciences–Engineering interface</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkbtvFDEQxi1ERB7QUiKXNHv4sbteN0jJKQlIkdJAbfns2csSr334cRE9f3i8STgRuRhr5pvffNKH0EdKVpTI4UtM07hihMoVEbR7g06oaFnT9T17e_gP8hidpvSLEC54171Dx5xKyWjfnaC_lylPs85T8DiMWG9ScCUDTllnSEvrrsza43QPDrJ2eC7JOMD7SS8ab3W0-KKZgwVcXI46heItrsjt5Le4CrAF2GET_H4h1zsV4qHEp5IfQrxP79HRqF2CDy_1DP28uvyx_tbc3F5_X5_fNKbjXW42bUsY54SaEcyg2WB6QoyEzdAJAC770crespYLIbUh0tZ52xupycCtZYSfoa_P3F3ZzGAN-GrYqV2sduMfFfSkXk_8dKe2Ya8Eoa2QogI-vwBi-F0gZTVPyYBz2kMoSTHeDoz39VXp6llqYkgpwng4Q4laolNLdGqJTi3R1YVP_5s7yP9lxR8B_VGZqQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cunningham, Ryan J</creator><creator>Loram, Ian D</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6883-6515</orcidid><orcidid>https://orcid.org/0000-0001-8125-6320</orcidid></search><sort><creationdate>20200101</creationdate><title>Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks</title><author>Cunningham, Ryan J ; Loram, Ian D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-b44023301cfec8a28c600c9eb857ee396fd96d243779ac09dc6046c9a083dd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Life Sciences–Engineering interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunningham, Ryan J</creatorcontrib><creatorcontrib>Loram, Ian D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunningham, Ryan J</au><au>Loram, Ian D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>17</volume><issue>162</issue><spage>20190715</spage><epage>20190715</epage><pages>20190715-20190715</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>The objective is to test automated estimation of active and passive skeletal muscle states using ultrasonic imaging. Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction or generalization of independently varying active and passive states. We use deep learning to investigate the generalizable content of two-dimensional (2D) US muscle images. US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle, were recorded from 32 healthy participants (seven female; ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, drift-free components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous independent variation of passive (joint angle) and active (electromyography) inputs. For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography and joint moment were estimated to accuracy 55 ± 8%, 57 ± 11% and 46 ± 9%, respectively. With 2D US imaging, deep neural networks can encode, in generalizable form, the activity-length-tension state relationship of these muscles. Observation-only, low-power 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalized muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31992165</pmid><doi>10.1098/rsif.2019.0715</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6883-6515</orcidid><orcidid>https://orcid.org/0000-0001-8125-6320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2020-01, Vol.17 (162), p.20190715-20190715
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7014797
source PubMed Central
subjects Life Sciences–Engineering interface
title Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20absolute%20states%20of%20human%20skeletal%20muscle%20via%20standard%20B-mode%20ultrasound%20imaging%20and%20deep%20convolutional%20neural%20networks&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Cunningham,%20Ryan%20J&rft.date=2020-01-01&rft.volume=17&rft.issue=162&rft.spage=20190715&rft.epage=20190715&rft.pages=20190715-20190715&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2019.0715&rft_dat=%3Cproquest_pubme%3E2348236363%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348236363&rft_id=info:pmid/31992165&rfr_iscdi=true