Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3

Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-01, Vol.13 (2), p.475
Hauptverfasser: Wei, Yabin, Jin, Shuangling, Zhang, Rui, Li, Weifeng, Wang, Jiangcan, Yang, Shuo, Wang, He, Yang, Minghe, Liu, Yan, Qiao, Wenming, Ling, Licheng, Jin, Minglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 475
container_title Materials
container_volume 13
creator Wei, Yabin
Jin, Shuangling
Zhang, Rui
Li, Weifeng
Wang, Jiangcan
Yang, Shuo
Wang, He
Yang, Minghe
Liu, Yan
Qiao, Wenming
Ling, Licheng
Jin, Minglin
description Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.
doi_str_mv 10.3390/ma13020475
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548688741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cec0f6f1266649d54f9f84f01c0149b998636c5ed82c537303d09809398a14b23</originalsourceid><addsrcrecordid>eNpVUdtKJDEQDbKLiuuLXxDwbaE16UpnkpcFGdYLqCNenkMmXXFaejqzSVqZN_EX_EO_ZLPo3uqhqqBOnXPgELLH2QGAZodLy4HVTEyaDbLNtZYV10J8-mffIrspPbBSAFzVepNsAdcSFMht8nIVcWWjzV0YaPD0AlNYhRjGRC-Gt-fXKZZ225U2o0cYwz32ic7X1NLZgNVVyPQm9OV6gn35zYvQUh8ivcEeXe4ekU5ttv06d45eYzu63zqXM_rU5QW9PIUv5LO3fcLdj7lD7o6_305Pq_PZydn06LxyxWquHDrmpee1lFLothFeeyU8445xoedaKwnSNdiq2jUwAQYt04pp0MpyMa9hh3x7512N8yW2DoccbW9WsVvauDbBdub_y9AtzH14NBPGQQooBPsfBDH8GDFl8xDGOBTPpm6EkkpNBC-or-8oF0NKEf0fBc7Mr8jM38jgJ-N1ilQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548688741</pqid></control><display><type>article</type><title>Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wei, Yabin ; Jin, Shuangling ; Zhang, Rui ; Li, Weifeng ; Wang, Jiangcan ; Yang, Shuo ; Wang, He ; Yang, Minghe ; Liu, Yan ; Qiao, Wenming ; Ling, Licheng ; Jin, Minglin</creator><creatorcontrib>Wei, Yabin ; Jin, Shuangling ; Zhang, Rui ; Li, Weifeng ; Wang, Jiangcan ; Yang, Shuo ; Wang, He ; Yang, Minghe ; Liu, Yan ; Qiao, Wenming ; Ling, Licheng ; Jin, Minglin</creatorcontrib><description>Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13020475</identifier><identifier>PMID: 31963836</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Aerogels ; Ammonia ; Catalysts ; Cerium oxides ; Chemical reduction ; Lewis acid ; Nitrates ; Pore size ; Propylene oxide ; Radiation ; Roasting ; Selective catalytic reduction ; Sol-gel processes ; Spectrum analysis ; Titanium dioxide ; Vapor pressure</subject><ispartof>Materials, 2020-01, Vol.13 (2), p.475</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cec0f6f1266649d54f9f84f01c0149b998636c5ed82c537303d09809398a14b23</citedby><cites>FETCH-LOGICAL-c383t-cec0f6f1266649d54f9f84f01c0149b998636c5ed82c537303d09809398a14b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013643/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013643/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wei, Yabin</creatorcontrib><creatorcontrib>Jin, Shuangling</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Li, Weifeng</creatorcontrib><creatorcontrib>Wang, Jiangcan</creatorcontrib><creatorcontrib>Yang, Shuo</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Yang, Minghe</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Qiao, Wenming</creatorcontrib><creatorcontrib>Ling, Licheng</creatorcontrib><creatorcontrib>Jin, Minglin</creatorcontrib><title>Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3</title><title>Materials</title><description>Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.</description><subject>Adsorption</subject><subject>Aerogels</subject><subject>Ammonia</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Chemical reduction</subject><subject>Lewis acid</subject><subject>Nitrates</subject><subject>Pore size</subject><subject>Propylene oxide</subject><subject>Radiation</subject><subject>Roasting</subject><subject>Selective catalytic reduction</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Vapor pressure</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUdtKJDEQDbKLiuuLXxDwbaE16UpnkpcFGdYLqCNenkMmXXFaejqzSVqZN_EX_EO_ZLPo3uqhqqBOnXPgELLH2QGAZodLy4HVTEyaDbLNtZYV10J8-mffIrspPbBSAFzVepNsAdcSFMht8nIVcWWjzV0YaPD0AlNYhRjGRC-Gt-fXKZZ225U2o0cYwz32ic7X1NLZgNVVyPQm9OV6gn35zYvQUh8ivcEeXe4ekU5ttv06d45eYzu63zqXM_rU5QW9PIUv5LO3fcLdj7lD7o6_305Pq_PZydn06LxyxWquHDrmpee1lFLothFeeyU8445xoedaKwnSNdiq2jUwAQYt04pp0MpyMa9hh3x7512N8yW2DoccbW9WsVvauDbBdub_y9AtzH14NBPGQQooBPsfBDH8GDFl8xDGOBTPpm6EkkpNBC-or-8oF0NKEf0fBc7Mr8jM38jgJ-N1ilQ</recordid><startdate>20200119</startdate><enddate>20200119</enddate><creator>Wei, Yabin</creator><creator>Jin, Shuangling</creator><creator>Zhang, Rui</creator><creator>Li, Weifeng</creator><creator>Wang, Jiangcan</creator><creator>Yang, Shuo</creator><creator>Wang, He</creator><creator>Yang, Minghe</creator><creator>Liu, Yan</creator><creator>Qiao, Wenming</creator><creator>Ling, Licheng</creator><creator>Jin, Minglin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200119</creationdate><title>Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3</title><author>Wei, Yabin ; Jin, Shuangling ; Zhang, Rui ; Li, Weifeng ; Wang, Jiangcan ; Yang, Shuo ; Wang, He ; Yang, Minghe ; Liu, Yan ; Qiao, Wenming ; Ling, Licheng ; Jin, Minglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cec0f6f1266649d54f9f84f01c0149b998636c5ed82c537303d09809398a14b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aerogels</topic><topic>Ammonia</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Chemical reduction</topic><topic>Lewis acid</topic><topic>Nitrates</topic><topic>Pore size</topic><topic>Propylene oxide</topic><topic>Radiation</topic><topic>Roasting</topic><topic>Selective catalytic reduction</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yabin</creatorcontrib><creatorcontrib>Jin, Shuangling</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Li, Weifeng</creatorcontrib><creatorcontrib>Wang, Jiangcan</creatorcontrib><creatorcontrib>Yang, Shuo</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Yang, Minghe</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Qiao, Wenming</creatorcontrib><creatorcontrib>Ling, Licheng</creatorcontrib><creatorcontrib>Jin, Minglin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yabin</au><au>Jin, Shuangling</au><au>Zhang, Rui</au><au>Li, Weifeng</au><au>Wang, Jiangcan</au><au>Yang, Shuo</au><au>Wang, He</au><au>Yang, Minghe</au><au>Liu, Yan</au><au>Qiao, Wenming</au><au>Ling, Licheng</au><au>Jin, Minglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3</atitle><jtitle>Materials</jtitle><date>2020-01-19</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>475</spage><pages>475-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31963836</pmid><doi>10.3390/ma13020475</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-01, Vol.13 (2), p.475
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013643
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adsorption
Aerogels
Ammonia
Catalysts
Cerium oxides
Chemical reduction
Lewis acid
Nitrates
Pore size
Propylene oxide
Radiation
Roasting
Selective catalytic reduction
Sol-gel processes
Spectrum analysis
Titanium dioxide
Vapor pressure
title Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Mesoporous%20Mn%E2%80%93Ce%E2%80%93Ti%E2%80%93O%20Aerogels%20by%20a%20One-Pot%20Sol%E2%80%93Gel%20Method%20for%20Selective%20Catalytic%20Reduction%20of%20NO%20with%20NH3&rft.jtitle=Materials&rft.au=Wei,%20Yabin&rft.date=2020-01-19&rft.volume=13&rft.issue=2&rft.spage=475&rft.pages=475-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13020475&rft_dat=%3Cproquest_pubme%3E2548688741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548688741&rft_id=info:pmid/31963836&rfr_iscdi=true