High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties

Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-01, Vol.13 (2), p.334
Hauptverfasser: Liu, Qiming, Zhu, Huali, Liu, Jun, Liao, Xiongwei, Tang, Zhuolin, Zhou, Cankai, Yuan, Mengming, Duan, Junfei, Li, Lingjun, Chen, Zhaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 334
container_title Materials
container_volume 13
creator Liu, Qiming
Zhu, Huali
Liu, Jun
Liao, Xiongwei
Tang, Zhuolin
Zhou, Cankai
Yuan, Mengming
Duan, Junfei
Li, Lingjun
Chen, Zhaoyong
description Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li MnO ·0.5LiMn Ni Co O was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li MnO ·0.5LiMn Ni Co O prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g at 0.05 C, and the discharge specific capacity was 138 mAh·g at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.
doi_str_mv 10.3390/ma13020334
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548688373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</originalsourceid><addsrcrecordid>eNpdkdFqFTEQhhdRbKm98QEk4I0Iq0lmN5t4IUg5WuGUFtHrkJNMuim7m2OSFfsAvrcprbWamwwz3_zMzN80zxl9A6Do29kwoJwCdI-aQ6aUaJnquscP4oPmOOcrWh8Ak1w9bQ6g5unQy8Pm12m4HNsLTD6m2SwWyTaUMaxz-yXYkWzNNSZ05PxncEjOTMEUzPSObLxHWzKJnlwk3JtkSogLOcMyRlfTNQw2xVzSasuakJjFkc1Ue1K0I87Bmql2xj2mEjA_a554M2U8vvuPmm8fN19PTtvt-afPJx-2re2oKC1XYieReqrADEbSnjPqhJWKgwPBOCI1VHVgmRTgdsi6QUjLfed3PVPWwVHz_lZ3v-5mdBaXksyk9ynMJl3raIL-t7KEUV_GH3qgDAR0VeDVnUCK31fMRc8hW5wms2Bcs-bVk0Fx2auKvvwPvYprWup6mvedFFLCAJV6fUvdXCsn9PfDMKpvDNZ_Da7wi4fj36N_7ITfiEyiLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548688373</pqid></control><display><type>article</type><title>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Liu, Qiming ; Zhu, Huali ; Liu, Jun ; Liao, Xiongwei ; Tang, Zhuolin ; Zhou, Cankai ; Yuan, Mengming ; Duan, Junfei ; Li, Lingjun ; Chen, Zhaoyong</creator><creatorcontrib>Liu, Qiming ; Zhu, Huali ; Liu, Jun ; Liao, Xiongwei ; Tang, Zhuolin ; Zhou, Cankai ; Yuan, Mengming ; Duan, Junfei ; Li, Lingjun ; Chen, Zhaoyong</creatorcontrib><description>Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li MnO ·0.5LiMn Ni Co O was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li MnO ·0.5LiMn Ni Co O prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g at 0.05 C, and the discharge specific capacity was 138 mAh·g at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13020334</identifier><identifier>PMID: 31940758</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Caustic soda ; Chelating agents ; Coprecipitation ; Decay rate ; Density ; Diffusion layers ; Discharge ; Electric potential ; Electric vehicles ; Electrochemical analysis ; Electrode materials ; Energy ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Morphology ; Nickel ; Oxalic acid ; Particle size ; Ratios ; Rechargeable batteries ; Scanning electron microscopy ; Sol-gel processes ; Spectrum analysis ; Structural stability ; Sucrose ; Voltage ; X-rays</subject><ispartof>Materials, 2020-01, Vol.13 (2), p.334</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</citedby><cites>FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</cites><orcidid>0000-0001-7191-4625 ; 0000-0002-5788-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013634/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013634/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Qiming</creatorcontrib><creatorcontrib>Zhu, Huali</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Liao, Xiongwei</creatorcontrib><creatorcontrib>Tang, Zhuolin</creatorcontrib><creatorcontrib>Zhou, Cankai</creatorcontrib><creatorcontrib>Yuan, Mengming</creatorcontrib><creatorcontrib>Duan, Junfei</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Chen, Zhaoyong</creatorcontrib><title>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li MnO ·0.5LiMn Ni Co O was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li MnO ·0.5LiMn Ni Co O prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g at 0.05 C, and the discharge specific capacity was 138 mAh·g at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.</description><subject>Acids</subject><subject>Caustic soda</subject><subject>Chelating agents</subject><subject>Coprecipitation</subject><subject>Decay rate</subject><subject>Density</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Oxalic acid</subject><subject>Particle size</subject><subject>Ratios</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><subject>Sucrose</subject><subject>Voltage</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFqFTEQhhdRbKm98QEk4I0Iq0lmN5t4IUg5WuGUFtHrkJNMuim7m2OSFfsAvrcprbWamwwz3_zMzN80zxl9A6Do29kwoJwCdI-aQ6aUaJnquscP4oPmOOcrWh8Ak1w9bQ6g5unQy8Pm12m4HNsLTD6m2SwWyTaUMaxz-yXYkWzNNSZ05PxncEjOTMEUzPSObLxHWzKJnlwk3JtkSogLOcMyRlfTNQw2xVzSasuakJjFkc1Ue1K0I87Bmql2xj2mEjA_a554M2U8vvuPmm8fN19PTtvt-afPJx-2re2oKC1XYieReqrADEbSnjPqhJWKgwPBOCI1VHVgmRTgdsi6QUjLfed3PVPWwVHz_lZ3v-5mdBaXksyk9ynMJl3raIL-t7KEUV_GH3qgDAR0VeDVnUCK31fMRc8hW5wms2Bcs-bVk0Fx2auKvvwPvYprWup6mvedFFLCAJV6fUvdXCsn9PfDMKpvDNZ_Da7wi4fj36N_7ITfiEyiLA</recordid><startdate>20200111</startdate><enddate>20200111</enddate><creator>Liu, Qiming</creator><creator>Zhu, Huali</creator><creator>Liu, Jun</creator><creator>Liao, Xiongwei</creator><creator>Tang, Zhuolin</creator><creator>Zhou, Cankai</creator><creator>Yuan, Mengming</creator><creator>Duan, Junfei</creator><creator>Li, Lingjun</creator><creator>Chen, Zhaoyong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7191-4625</orcidid><orcidid>https://orcid.org/0000-0002-5788-0235</orcidid></search><sort><creationdate>20200111</creationdate><title>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</title><author>Liu, Qiming ; Zhu, Huali ; Liu, Jun ; Liao, Xiongwei ; Tang, Zhuolin ; Zhou, Cankai ; Yuan, Mengming ; Duan, Junfei ; Li, Lingjun ; Chen, Zhaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Caustic soda</topic><topic>Chelating agents</topic><topic>Coprecipitation</topic><topic>Decay rate</topic><topic>Density</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Oxalic acid</topic><topic>Particle size</topic><topic>Ratios</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><topic>Sucrose</topic><topic>Voltage</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiming</creatorcontrib><creatorcontrib>Zhu, Huali</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Liao, Xiongwei</creatorcontrib><creatorcontrib>Tang, Zhuolin</creatorcontrib><creatorcontrib>Zhou, Cankai</creatorcontrib><creatorcontrib>Yuan, Mengming</creatorcontrib><creatorcontrib>Duan, Junfei</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Chen, Zhaoyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiming</au><au>Zhu, Huali</au><au>Liu, Jun</au><au>Liao, Xiongwei</au><au>Tang, Zhuolin</au><au>Zhou, Cankai</au><au>Yuan, Mengming</au><au>Duan, Junfei</au><au>Li, Lingjun</au><au>Chen, Zhaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-01-11</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>334</spage><pages>334-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li MnO ·0.5LiMn Ni Co O was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li MnO ·0.5LiMn Ni Co O prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g at 0.05 C, and the discharge specific capacity was 138 mAh·g at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31940758</pmid><doi>10.3390/ma13020334</doi><orcidid>https://orcid.org/0000-0001-7191-4625</orcidid><orcidid>https://orcid.org/0000-0002-5788-0235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-01, Vol.13 (2), p.334
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013634
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Acids
Caustic soda
Chelating agents
Coprecipitation
Decay rate
Density
Diffusion layers
Discharge
Electric potential
Electric vehicles
Electrochemical analysis
Electrode materials
Energy
Ion diffusion
Lithium
Lithium-ion batteries
Morphology
Nickel
Oxalic acid
Particle size
Ratios
Rechargeable batteries
Scanning electron microscopy
Sol-gel processes
Spectrum analysis
Structural stability
Sucrose
Voltage
X-rays
title High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Lithium-Rich%20Layered%20Oxide%20Material:%20Effects%20of%20Preparation%20Methods%20on%20Microstructure%20and%20Electrochemical%20Properties&rft.jtitle=Materials&rft.au=Liu,%20Qiming&rft.date=2020-01-11&rft.volume=13&rft.issue=2&rft.spage=334&rft.pages=334-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13020334&rft_dat=%3Cproquest_pubme%3E2548688373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548688373&rft_id=info:pmid/31940758&rfr_iscdi=true