High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties
Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are...
Gespeichert in:
Veröffentlicht in: | Materials 2020-01, Vol.13 (2), p.334 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 334 |
container_title | Materials |
container_volume | 13 |
creator | Liu, Qiming Zhu, Huali Liu, Jun Liao, Xiongwei Tang, Zhuolin Zhou, Cankai Yuan, Mengming Duan, Junfei Li, Lingjun Chen, Zhaoyong |
description | Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li
MnO
·0.5LiMn
Ni
Co
O
was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li
MnO
·0.5LiMn
Ni
Co
O
prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g
at 0.05 C, and the discharge specific capacity was 138 mAh·g
at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries. |
doi_str_mv | 10.3390/ma13020334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548688373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</originalsourceid><addsrcrecordid>eNpdkdFqFTEQhhdRbKm98QEk4I0Iq0lmN5t4IUg5WuGUFtHrkJNMuim7m2OSFfsAvrcprbWamwwz3_zMzN80zxl9A6Do29kwoJwCdI-aQ6aUaJnquscP4oPmOOcrWh8Ak1w9bQ6g5unQy8Pm12m4HNsLTD6m2SwWyTaUMaxz-yXYkWzNNSZ05PxncEjOTMEUzPSObLxHWzKJnlwk3JtkSogLOcMyRlfTNQw2xVzSasuakJjFkc1Ue1K0I87Bmql2xj2mEjA_a554M2U8vvuPmm8fN19PTtvt-afPJx-2re2oKC1XYieReqrADEbSnjPqhJWKgwPBOCI1VHVgmRTgdsi6QUjLfed3PVPWwVHz_lZ3v-5mdBaXksyk9ynMJl3raIL-t7KEUV_GH3qgDAR0VeDVnUCK31fMRc8hW5wms2Bcs-bVk0Fx2auKvvwPvYprWup6mvedFFLCAJV6fUvdXCsn9PfDMKpvDNZ_Da7wi4fj36N_7ITfiEyiLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548688373</pqid></control><display><type>article</type><title>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Liu, Qiming ; Zhu, Huali ; Liu, Jun ; Liao, Xiongwei ; Tang, Zhuolin ; Zhou, Cankai ; Yuan, Mengming ; Duan, Junfei ; Li, Lingjun ; Chen, Zhaoyong</creator><creatorcontrib>Liu, Qiming ; Zhu, Huali ; Liu, Jun ; Liao, Xiongwei ; Tang, Zhuolin ; Zhou, Cankai ; Yuan, Mengming ; Duan, Junfei ; Li, Lingjun ; Chen, Zhaoyong</creatorcontrib><description>Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li
MnO
·0.5LiMn
Ni
Co
O
was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li
MnO
·0.5LiMn
Ni
Co
O
prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g
at 0.05 C, and the discharge specific capacity was 138 mAh·g
at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13020334</identifier><identifier>PMID: 31940758</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Caustic soda ; Chelating agents ; Coprecipitation ; Decay rate ; Density ; Diffusion layers ; Discharge ; Electric potential ; Electric vehicles ; Electrochemical analysis ; Electrode materials ; Energy ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Morphology ; Nickel ; Oxalic acid ; Particle size ; Ratios ; Rechargeable batteries ; Scanning electron microscopy ; Sol-gel processes ; Spectrum analysis ; Structural stability ; Sucrose ; Voltage ; X-rays</subject><ispartof>Materials, 2020-01, Vol.13 (2), p.334</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</citedby><cites>FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</cites><orcidid>0000-0001-7191-4625 ; 0000-0002-5788-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013634/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013634/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Qiming</creatorcontrib><creatorcontrib>Zhu, Huali</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Liao, Xiongwei</creatorcontrib><creatorcontrib>Tang, Zhuolin</creatorcontrib><creatorcontrib>Zhou, Cankai</creatorcontrib><creatorcontrib>Yuan, Mengming</creatorcontrib><creatorcontrib>Duan, Junfei</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Chen, Zhaoyong</creatorcontrib><title>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li
MnO
·0.5LiMn
Ni
Co
O
was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li
MnO
·0.5LiMn
Ni
Co
O
prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g
at 0.05 C, and the discharge specific capacity was 138 mAh·g
at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.</description><subject>Acids</subject><subject>Caustic soda</subject><subject>Chelating agents</subject><subject>Coprecipitation</subject><subject>Decay rate</subject><subject>Density</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Oxalic acid</subject><subject>Particle size</subject><subject>Ratios</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><subject>Sucrose</subject><subject>Voltage</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFqFTEQhhdRbKm98QEk4I0Iq0lmN5t4IUg5WuGUFtHrkJNMuim7m2OSFfsAvrcprbWamwwz3_zMzN80zxl9A6Do29kwoJwCdI-aQ6aUaJnquscP4oPmOOcrWh8Ak1w9bQ6g5unQy8Pm12m4HNsLTD6m2SwWyTaUMaxz-yXYkWzNNSZ05PxncEjOTMEUzPSObLxHWzKJnlwk3JtkSogLOcMyRlfTNQw2xVzSasuakJjFkc1Ue1K0I87Bmql2xj2mEjA_a554M2U8vvuPmm8fN19PTtvt-afPJx-2re2oKC1XYieReqrADEbSnjPqhJWKgwPBOCI1VHVgmRTgdsi6QUjLfed3PVPWwVHz_lZ3v-5mdBaXksyk9ynMJl3raIL-t7KEUV_GH3qgDAR0VeDVnUCK31fMRc8hW5wms2Bcs-bVk0Fx2auKvvwPvYprWup6mvedFFLCAJV6fUvdXCsn9PfDMKpvDNZ_Da7wi4fj36N_7ITfiEyiLA</recordid><startdate>20200111</startdate><enddate>20200111</enddate><creator>Liu, Qiming</creator><creator>Zhu, Huali</creator><creator>Liu, Jun</creator><creator>Liao, Xiongwei</creator><creator>Tang, Zhuolin</creator><creator>Zhou, Cankai</creator><creator>Yuan, Mengming</creator><creator>Duan, Junfei</creator><creator>Li, Lingjun</creator><creator>Chen, Zhaoyong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7191-4625</orcidid><orcidid>https://orcid.org/0000-0002-5788-0235</orcidid></search><sort><creationdate>20200111</creationdate><title>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</title><author>Liu, Qiming ; Zhu, Huali ; Liu, Jun ; Liao, Xiongwei ; Tang, Zhuolin ; Zhou, Cankai ; Yuan, Mengming ; Duan, Junfei ; Li, Lingjun ; Chen, Zhaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-296b8e0f093a7a805210d6c8923d3612ee0a0943c1863dbe14768c2f4fb519cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Caustic soda</topic><topic>Chelating agents</topic><topic>Coprecipitation</topic><topic>Decay rate</topic><topic>Density</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Oxalic acid</topic><topic>Particle size</topic><topic>Ratios</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><topic>Sucrose</topic><topic>Voltage</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiming</creatorcontrib><creatorcontrib>Zhu, Huali</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Liao, Xiongwei</creatorcontrib><creatorcontrib>Tang, Zhuolin</creatorcontrib><creatorcontrib>Zhou, Cankai</creatorcontrib><creatorcontrib>Yuan, Mengming</creatorcontrib><creatorcontrib>Duan, Junfei</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Chen, Zhaoyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiming</au><au>Zhu, Huali</au><au>Liu, Jun</au><au>Liao, Xiongwei</au><au>Tang, Zhuolin</au><au>Zhou, Cankai</au><au>Yuan, Mengming</au><au>Duan, Junfei</au><au>Li, Lingjun</au><au>Chen, Zhaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-01-11</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>334</spage><pages>334-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li
MnO
·0.5LiMn
Ni
Co
O
was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li
MnO
·0.5LiMn
Ni
Co
O
prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g
at 0.05 C, and the discharge specific capacity was 138 mAh·g
at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31940758</pmid><doi>10.3390/ma13020334</doi><orcidid>https://orcid.org/0000-0001-7191-4625</orcidid><orcidid>https://orcid.org/0000-0002-5788-0235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-01, Vol.13 (2), p.334 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013634 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Acids Caustic soda Chelating agents Coprecipitation Decay rate Density Diffusion layers Discharge Electric potential Electric vehicles Electrochemical analysis Electrode materials Energy Ion diffusion Lithium Lithium-ion batteries Morphology Nickel Oxalic acid Particle size Ratios Rechargeable batteries Scanning electron microscopy Sol-gel processes Spectrum analysis Structural stability Sucrose Voltage X-rays |
title | High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Lithium-Rich%20Layered%20Oxide%20Material:%20Effects%20of%20Preparation%20Methods%20on%20Microstructure%20and%20Electrochemical%20Properties&rft.jtitle=Materials&rft.au=Liu,%20Qiming&rft.date=2020-01-11&rft.volume=13&rft.issue=2&rft.spage=334&rft.pages=334-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13020334&rft_dat=%3Cproquest_pubme%3E2548688373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548688373&rft_id=info:pmid/31940758&rfr_iscdi=true |