Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts
The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastase...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.2309-2309, Article 2309 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2309 |
---|---|
container_issue | 1 |
container_start_page | 2309 |
container_title | Scientific reports |
container_volume | 10 |
creator | Wasinski, Benjamin Sohail, Anjum Bonfil, R. Daniel Kim, Seongho Saliganan, Allen Polin, Lisa Bouhamdan, Mohamad Kim, Hyeong-Reh C. Prunotto, Marco Fridman, Rafael |
description | The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma. |
doi_str_mv | 10.1038/s41598-020-59028-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354161592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-f17096c12eac4ade3d33f7c43fb4c0454220167141349e496d0723f66f1ec41d3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVqV_gAOyxIVDAx7b-bogod1-IC0ClUXiZnmdSTbVxk7thKX_hJ_LLLuUwgHLkkea955n3kuS58BfA5flm6ggq8qUC55mFRdlun2UHAuuslRIIR4_qI-S0xhvOJ1MVAqqp8mRpGYBRX6c_Jh30fqu7hyb-97Qc40Wh9GHeMbm82tYMePqXSXO2Kfgez8iW069nwK7DH47rtm2G9fEm_nNxrTo2GoaD8zP0zAEjBEjO_8-YOh6dKPZsMXkWvYBRxPpdpER-2oJvOTsKzrfBtOM8VnypDGbiKeH9yT5cnG-nF2li4-X72fvFqnNAMa0gYJXuQWBxipTo6ylbAqrZLNSlhxQQnDIC1AgVYWqymteCNnkeQNoFdTyJHm71x2mVY-1pQmD2eiBhjXhTnvT6b87rlvr1n_TBQdRKkUCrw4Cwd9OGEfdk6VIZjj0U9RCZgpyCksQ9OU_0Bvy0dF6O5TM8pxzIJTYo2zwMQZs7ocBrnfZ6332mrLXv7LXWyK9eLjGPeV30gSQe0Cklmsx_Pn7P7I_AVnUuic</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353566001</pqid></control><display><type>article</type><title>Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wasinski, Benjamin ; Sohail, Anjum ; Bonfil, R. Daniel ; Kim, Seongho ; Saliganan, Allen ; Polin, Lisa ; Bouhamdan, Mohamad ; Kim, Hyeong-Reh C. ; Prunotto, Marco ; Fridman, Rafael</creator><creatorcontrib>Wasinski, Benjamin ; Sohail, Anjum ; Bonfil, R. Daniel ; Kim, Seongho ; Saliganan, Allen ; Polin, Lisa ; Bouhamdan, Mohamad ; Kim, Hyeong-Reh C. ; Prunotto, Marco ; Fridman, Rafael</creatorcontrib><description>The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-59028-w</identifier><identifier>PMID: 32047176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/95 ; 38 ; 631/67/327 ; 631/80/86 ; 64 ; 64/60 ; 82 ; 82/29 ; 82/80 ; 96 ; Animals ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cell Proliferation ; Collagen ; Collagen (type I) ; Collagen Type I - metabolism ; Colonization ; Discoidin Domain Receptor 1 - genetics ; Discoidin Domain Receptor 1 - metabolism ; Discoidin Domain Receptor 2 - genetics ; Discoidin Domain Receptor 2 - metabolism ; Female ; Fibrillar Collagens - metabolism ; Fibrosarcoma ; Fibrosarcoma - genetics ; Fibrosarcoma - metabolism ; Fibrosarcoma - pathology ; Gene Expression Regulation, Neoplastic ; Growth rate ; Humanities and Social Sciences ; Humans ; Inoculation ; Intravenous administration ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - prevention & control ; Lung Neoplasms - secondary ; Lungs ; Metastases ; Metastasis ; Mice ; Mice, Nude ; multidisciplinary ; Phosphorylation ; Science ; Science (multidisciplinary) ; Stroma ; Tumor Cells, Cultured ; Tumors ; Tyrosine ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.2309-2309, Article 2309</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-f17096c12eac4ade3d33f7c43fb4c0454220167141349e496d0723f66f1ec41d3</citedby><cites>FETCH-LOGICAL-c511t-f17096c12eac4ade3d33f7c43fb4c0454220167141349e496d0723f66f1ec41d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012844/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012844/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32047176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wasinski, Benjamin</creatorcontrib><creatorcontrib>Sohail, Anjum</creatorcontrib><creatorcontrib>Bonfil, R. Daniel</creatorcontrib><creatorcontrib>Kim, Seongho</creatorcontrib><creatorcontrib>Saliganan, Allen</creatorcontrib><creatorcontrib>Polin, Lisa</creatorcontrib><creatorcontrib>Bouhamdan, Mohamad</creatorcontrib><creatorcontrib>Kim, Hyeong-Reh C.</creatorcontrib><creatorcontrib>Prunotto, Marco</creatorcontrib><creatorcontrib>Fridman, Rafael</creatorcontrib><title>Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.</description><subject>13</subject><subject>13/106</subject><subject>13/95</subject><subject>38</subject><subject>631/67/327</subject><subject>631/80/86</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/29</subject><subject>82/80</subject><subject>96</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cell Proliferation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - metabolism</subject><subject>Colonization</subject><subject>Discoidin Domain Receptor 1 - genetics</subject><subject>Discoidin Domain Receptor 1 - metabolism</subject><subject>Discoidin Domain Receptor 2 - genetics</subject><subject>Discoidin Domain Receptor 2 - metabolism</subject><subject>Female</subject><subject>Fibrillar Collagens - metabolism</subject><subject>Fibrosarcoma</subject><subject>Fibrosarcoma - genetics</subject><subject>Fibrosarcoma - metabolism</subject><subject>Fibrosarcoma - pathology</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Growth rate</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inoculation</subject><subject>Intravenous administration</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - prevention & control</subject><subject>Lung Neoplasms - secondary</subject><subject>Lungs</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>multidisciplinary</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stroma</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAQjRCIVqV_gAOyxIVDAx7b-bogod1-IC0ClUXiZnmdSTbVxk7thKX_hJ_LLLuUwgHLkkea955n3kuS58BfA5flm6ggq8qUC55mFRdlun2UHAuuslRIIR4_qI-S0xhvOJ1MVAqqp8mRpGYBRX6c_Jh30fqu7hyb-97Qc40Wh9GHeMbm82tYMePqXSXO2Kfgez8iW069nwK7DH47rtm2G9fEm_nNxrTo2GoaD8zP0zAEjBEjO_8-YOh6dKPZsMXkWvYBRxPpdpER-2oJvOTsKzrfBtOM8VnypDGbiKeH9yT5cnG-nF2li4-X72fvFqnNAMa0gYJXuQWBxipTo6ylbAqrZLNSlhxQQnDIC1AgVYWqymteCNnkeQNoFdTyJHm71x2mVY-1pQmD2eiBhjXhTnvT6b87rlvr1n_TBQdRKkUCrw4Cwd9OGEfdk6VIZjj0U9RCZgpyCksQ9OU_0Bvy0dF6O5TM8pxzIJTYo2zwMQZs7ocBrnfZ6332mrLXv7LXWyK9eLjGPeV30gSQe0Cklmsx_Pn7P7I_AVnUuic</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Wasinski, Benjamin</creator><creator>Sohail, Anjum</creator><creator>Bonfil, R. Daniel</creator><creator>Kim, Seongho</creator><creator>Saliganan, Allen</creator><creator>Polin, Lisa</creator><creator>Bouhamdan, Mohamad</creator><creator>Kim, Hyeong-Reh C.</creator><creator>Prunotto, Marco</creator><creator>Fridman, Rafael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200211</creationdate><title>Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts</title><author>Wasinski, Benjamin ; Sohail, Anjum ; Bonfil, R. Daniel ; Kim, Seongho ; Saliganan, Allen ; Polin, Lisa ; Bouhamdan, Mohamad ; Kim, Hyeong-Reh C. ; Prunotto, Marco ; Fridman, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-f17096c12eac4ade3d33f7c43fb4c0454220167141349e496d0723f66f1ec41d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/106</topic><topic>13/95</topic><topic>38</topic><topic>631/67/327</topic><topic>631/80/86</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/29</topic><topic>82/80</topic><topic>96</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cell Proliferation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - metabolism</topic><topic>Colonization</topic><topic>Discoidin Domain Receptor 1 - genetics</topic><topic>Discoidin Domain Receptor 1 - metabolism</topic><topic>Discoidin Domain Receptor 2 - genetics</topic><topic>Discoidin Domain Receptor 2 - metabolism</topic><topic>Female</topic><topic>Fibrillar Collagens - metabolism</topic><topic>Fibrosarcoma</topic><topic>Fibrosarcoma - genetics</topic><topic>Fibrosarcoma - metabolism</topic><topic>Fibrosarcoma - pathology</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Growth rate</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inoculation</topic><topic>Intravenous administration</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - prevention & control</topic><topic>Lung Neoplasms - secondary</topic><topic>Lungs</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>multidisciplinary</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stroma</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasinski, Benjamin</creatorcontrib><creatorcontrib>Sohail, Anjum</creatorcontrib><creatorcontrib>Bonfil, R. Daniel</creatorcontrib><creatorcontrib>Kim, Seongho</creatorcontrib><creatorcontrib>Saliganan, Allen</creatorcontrib><creatorcontrib>Polin, Lisa</creatorcontrib><creatorcontrib>Bouhamdan, Mohamad</creatorcontrib><creatorcontrib>Kim, Hyeong-Reh C.</creatorcontrib><creatorcontrib>Prunotto, Marco</creatorcontrib><creatorcontrib>Fridman, Rafael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasinski, Benjamin</au><au>Sohail, Anjum</au><au>Bonfil, R. Daniel</au><au>Kim, Seongho</au><au>Saliganan, Allen</au><au>Polin, Lisa</au><au>Bouhamdan, Mohamad</au><au>Kim, Hyeong-Reh C.</au><au>Prunotto, Marco</au><au>Fridman, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-11</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>2309</spage><epage>2309</epage><pages>2309-2309</pages><artnum>2309</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32047176</pmid><doi>10.1038/s41598-020-59028-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.2309-2309, Article 2309 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012844 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 13 13/106 13/95 38 631/67/327 631/80/86 64 64/60 82 82/29 82/80 96 Animals Apoptosis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Cell Proliferation Collagen Collagen (type I) Collagen Type I - metabolism Colonization Discoidin Domain Receptor 1 - genetics Discoidin Domain Receptor 1 - metabolism Discoidin Domain Receptor 2 - genetics Discoidin Domain Receptor 2 - metabolism Female Fibrillar Collagens - metabolism Fibrosarcoma Fibrosarcoma - genetics Fibrosarcoma - metabolism Fibrosarcoma - pathology Gene Expression Regulation, Neoplastic Growth rate Humanities and Social Sciences Humans Inoculation Intravenous administration Lung cancer Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - prevention & control Lung Neoplasms - secondary Lungs Metastases Metastasis Mice Mice, Nude multidisciplinary Phosphorylation Science Science (multidisciplinary) Stroma Tumor Cells, Cultured Tumors Tyrosine Xenograft Model Antitumor Assays Xenografts |
title | Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discoidin%20Domain%20Receptors,%20DDR1b%20and%20DDR2,%20Promote%20Tumour%20Growth%20within%20Collagen%20but%20DDR1b%20Suppresses%20Experimental%20Lung%20Metastasis%20in%20HT1080%20Xenografts&rft.jtitle=Scientific%20reports&rft.au=Wasinski,%20Benjamin&rft.date=2020-02-11&rft.volume=10&rft.issue=1&rft.spage=2309&rft.epage=2309&rft.pages=2309-2309&rft.artnum=2309&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-59028-w&rft_dat=%3Cproquest_pubme%3E2354161592%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353566001&rft_id=info:pmid/32047176&rfr_iscdi=true |