Modelling evolution of virulence in populations with a distributed parasite load

Modelling evolution of virulence in host-parasite systems is an actively developing area of research with ever-growing literature. However, most of the existing studies overlook the fact that individuals within an infected population may have a variable infection load, i.e. infected populations are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2020-01, Vol.80 (1-2), p.111-141
Hauptverfasser: Sandhu, Simran K., Morozov, Andrew Yu, Farkas, József Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1-2
container_start_page 111
container_title Journal of mathematical biology
container_volume 80
creator Sandhu, Simran K.
Morozov, Andrew Yu
Farkas, József Z.
description Modelling evolution of virulence in host-parasite systems is an actively developing area of research with ever-growing literature. However, most of the existing studies overlook the fact that individuals within an infected population may have a variable infection load, i.e. infected populations are naturally structured with respect to the parasite burden. Empirical data suggests that the mortality and infectiousness of individuals can strongly depend on their infection load; moreover, the shape of distribution of infection load may vary on ecological and evolutionary time scales. Here we show that distributed infection load may have important consequences for the eventual evolution of virulence as compared to a similar model without structuring. Mathematically, we consider an SI model, where the dynamics of the infected subpopulation is described by a von Förster-type equation, in which the infection load plays the role of age. We implement the adaptive dynamics framework to predict evolutionary outcomes in this model. We demonstrate that for simple trade-off functions between virulence, disease transmission and parasite growth rates, multiple evolutionary attractors are possible. Interestingly, unlike in the case of unstructured models, achieving an evolutionary stable strategy becomes possible even for a variation of a single ecological parameter (the parasite growth rate) and keeping the other parameters constant. We conclude that evolution in disease-structured populations is strongly mediated by alterations in the overall shape of the parasite load distribution.
doi_str_mv 10.1007/s00285-019-01351-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207935600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-2b346c1829e945d71ad691731979be76ba1491643132bb80b5da25624dcb96ed3</originalsourceid><addsrcrecordid>eNqNkU2PFCEQhonRuOPqH_BgSLyYbFoL6IbmYmImrpqs0YOeCTTMLJseaIGejf9eZnodPw7GA4GknrdSxYPQUwIvCYB4lQFo3zVAZD2sIw2_h1akZbQhLeH30QoYsIb3hJ6hRznfABDRSfIQnTGQgrZMrNDnj9G6cfRhi90-jnPxMeC4wXuf5tGFwWEf8BSnedSHUsa3vlxjja3PJXkzF2fxpJPOvjg8Rm0fowcbPWb35O4-R18v335Zv2-uPr37sH5z1Qwt7UpDDWv5QHoqnWw7K4i2XBLBiBTSOMGNJq0kvGWEUWN6MJ3VtOO0tYOR3Fl2jl4vfafZ7JwdXChJj2pKfqfTdxW1V39Wgr9W27hXAgjtAWqDF3cNUvw2u1zUzueh_oUOLs5ZUQpCso4f0ed_oTdxTqGud6B4zxilolJ0oYYUc05ucxqGgDoIU4swVYWpozDFa-jZ72ucIj8NVaBfgFtn4iYP_iDlhAFAV2X3ktUX8LUvR03rOIdSoxf_H600W-hcibB16deS_5j_B7L4wdc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206833227</pqid></control><display><type>article</type><title>Modelling evolution of virulence in populations with a distributed parasite load</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sandhu, Simran K. ; Morozov, Andrew Yu ; Farkas, József Z.</creator><creatorcontrib>Sandhu, Simran K. ; Morozov, Andrew Yu ; Farkas, József Z.</creatorcontrib><description>Modelling evolution of virulence in host-parasite systems is an actively developing area of research with ever-growing literature. However, most of the existing studies overlook the fact that individuals within an infected population may have a variable infection load, i.e. infected populations are naturally structured with respect to the parasite burden. Empirical data suggests that the mortality and infectiousness of individuals can strongly depend on their infection load; moreover, the shape of distribution of infection load may vary on ecological and evolutionary time scales. Here we show that distributed infection load may have important consequences for the eventual evolution of virulence as compared to a similar model without structuring. Mathematically, we consider an SI model, where the dynamics of the infected subpopulation is described by a von Förster-type equation, in which the infection load plays the role of age. We implement the adaptive dynamics framework to predict evolutionary outcomes in this model. We demonstrate that for simple trade-off functions between virulence, disease transmission and parasite growth rates, multiple evolutionary attractors are possible. Interestingly, unlike in the case of unstructured models, achieving an evolutionary stable strategy becomes possible even for a variation of a single ecological parameter (the parasite growth rate) and keeping the other parameters constant. We conclude that evolution in disease-structured populations is strongly mediated by alterations in the overall shape of the parasite load distribution.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-019-01351-6</identifier><identifier>PMID: 30972437</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Applications of Mathematics ; Biology ; Disease transmission ; Evolution ; Evolution, Molecular ; Growth rate ; Host-Parasite Interactions - genetics ; Humans ; Infections ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Load distribution ; Load distribution (forces) ; Loads (forces) ; Mathematical &amp; Computational Biology ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Modelling ; Models, Biological ; Parameters ; Parasite Load ; Parasites ; Parasites - genetics ; Parasites - pathogenicity ; Populations ; Protozoan Infections - parasitology ; Protozoan Infections - transmission ; Science &amp; Technology ; Stress concentration ; Virulence ; Virulence - genetics</subject><ispartof>Journal of mathematical biology, 2020-01, Vol.80 (1-2), p.111-141</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Mathematical Biology is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000514189300006</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c425t-2b346c1829e945d71ad691731979be76ba1491643132bb80b5da25624dcb96ed3</cites><orcidid>0000-0002-6935-3563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-019-01351-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-019-01351-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30972437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandhu, Simran K.</creatorcontrib><creatorcontrib>Morozov, Andrew Yu</creatorcontrib><creatorcontrib>Farkas, József Z.</creatorcontrib><title>Modelling evolution of virulence in populations with a distributed parasite load</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J MATH BIOL</addtitle><addtitle>J Math Biol</addtitle><description>Modelling evolution of virulence in host-parasite systems is an actively developing area of research with ever-growing literature. However, most of the existing studies overlook the fact that individuals within an infected population may have a variable infection load, i.e. infected populations are naturally structured with respect to the parasite burden. Empirical data suggests that the mortality and infectiousness of individuals can strongly depend on their infection load; moreover, the shape of distribution of infection load may vary on ecological and evolutionary time scales. Here we show that distributed infection load may have important consequences for the eventual evolution of virulence as compared to a similar model without structuring. Mathematically, we consider an SI model, where the dynamics of the infected subpopulation is described by a von Förster-type equation, in which the infection load plays the role of age. We implement the adaptive dynamics framework to predict evolutionary outcomes in this model. We demonstrate that for simple trade-off functions between virulence, disease transmission and parasite growth rates, multiple evolutionary attractors are possible. Interestingly, unlike in the case of unstructured models, achieving an evolutionary stable strategy becomes possible even for a variation of a single ecological parameter (the parasite growth rate) and keeping the other parameters constant. We conclude that evolution in disease-structured populations is strongly mediated by alterations in the overall shape of the parasite load distribution.</description><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Biology</subject><subject>Disease transmission</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Growth rate</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Humans</subject><subject>Infections</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Load distribution</subject><subject>Load distribution (forces)</subject><subject>Loads (forces)</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Parameters</subject><subject>Parasite Load</subject><subject>Parasites</subject><subject>Parasites - genetics</subject><subject>Parasites - pathogenicity</subject><subject>Populations</subject><subject>Protozoan Infections - parasitology</subject><subject>Protozoan Infections - transmission</subject><subject>Science &amp; Technology</subject><subject>Stress concentration</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU2PFCEQhonRuOPqH_BgSLyYbFoL6IbmYmImrpqs0YOeCTTMLJseaIGejf9eZnodPw7GA4GknrdSxYPQUwIvCYB4lQFo3zVAZD2sIw2_h1akZbQhLeH30QoYsIb3hJ6hRznfABDRSfIQnTGQgrZMrNDnj9G6cfRhi90-jnPxMeC4wXuf5tGFwWEf8BSnedSHUsa3vlxjja3PJXkzF2fxpJPOvjg8Rm0fowcbPWb35O4-R18v335Zv2-uPr37sH5z1Qwt7UpDDWv5QHoqnWw7K4i2XBLBiBTSOMGNJq0kvGWEUWN6MJ3VtOO0tYOR3Fl2jl4vfafZ7JwdXChJj2pKfqfTdxW1V39Wgr9W27hXAgjtAWqDF3cNUvw2u1zUzueh_oUOLs5ZUQpCso4f0ed_oTdxTqGud6B4zxilolJ0oYYUc05ucxqGgDoIU4swVYWpozDFa-jZ72ucIj8NVaBfgFtn4iYP_iDlhAFAV2X3ktUX8LUvR03rOIdSoxf_H600W-hcibB16deS_5j_B7L4wdc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Sandhu, Simran K.</creator><creator>Morozov, Andrew Yu</creator><creator>Farkas, József Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6935-3563</orcidid></search><sort><creationdate>20200101</creationdate><title>Modelling evolution of virulence in populations with a distributed parasite load</title><author>Sandhu, Simran K. ; Morozov, Andrew Yu ; Farkas, József Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-2b346c1829e945d71ad691731979be76ba1491643132bb80b5da25624dcb96ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Biology</topic><topic>Disease transmission</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Growth rate</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Humans</topic><topic>Infections</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Load distribution</topic><topic>Load distribution (forces)</topic><topic>Loads (forces)</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Parameters</topic><topic>Parasite Load</topic><topic>Parasites</topic><topic>Parasites - genetics</topic><topic>Parasites - pathogenicity</topic><topic>Populations</topic><topic>Protozoan Infections - parasitology</topic><topic>Protozoan Infections - transmission</topic><topic>Science &amp; Technology</topic><topic>Stress concentration</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandhu, Simran K.</creatorcontrib><creatorcontrib>Morozov, Andrew Yu</creatorcontrib><creatorcontrib>Farkas, József Z.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandhu, Simran K.</au><au>Morozov, Andrew Yu</au><au>Farkas, József Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling evolution of virulence in populations with a distributed parasite load</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><stitle>J MATH BIOL</stitle><addtitle>J Math Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>80</volume><issue>1-2</issue><spage>111</spage><epage>141</epage><pages>111-141</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>Modelling evolution of virulence in host-parasite systems is an actively developing area of research with ever-growing literature. However, most of the existing studies overlook the fact that individuals within an infected population may have a variable infection load, i.e. infected populations are naturally structured with respect to the parasite burden. Empirical data suggests that the mortality and infectiousness of individuals can strongly depend on their infection load; moreover, the shape of distribution of infection load may vary on ecological and evolutionary time scales. Here we show that distributed infection load may have important consequences for the eventual evolution of virulence as compared to a similar model without structuring. Mathematically, we consider an SI model, where the dynamics of the infected subpopulation is described by a von Förster-type equation, in which the infection load plays the role of age. We implement the adaptive dynamics framework to predict evolutionary outcomes in this model. We demonstrate that for simple trade-off functions between virulence, disease transmission and parasite growth rates, multiple evolutionary attractors are possible. Interestingly, unlike in the case of unstructured models, achieving an evolutionary stable strategy becomes possible even for a variation of a single ecological parameter (the parasite growth rate) and keeping the other parameters constant. We conclude that evolution in disease-structured populations is strongly mediated by alterations in the overall shape of the parasite load distribution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30972437</pmid><doi>10.1007/s00285-019-01351-6</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-6935-3563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2020-01, Vol.80 (1-2), p.111-141
issn 0303-6812
1432-1416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012800
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Applications of Mathematics
Biology
Disease transmission
Evolution
Evolution, Molecular
Growth rate
Host-Parasite Interactions - genetics
Humans
Infections
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Load distribution
Load distribution (forces)
Loads (forces)
Mathematical & Computational Biology
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Modelling
Models, Biological
Parameters
Parasite Load
Parasites
Parasites - genetics
Parasites - pathogenicity
Populations
Protozoan Infections - parasitology
Protozoan Infections - transmission
Science & Technology
Stress concentration
Virulence
Virulence - genetics
title Modelling evolution of virulence in populations with a distributed parasite load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20evolution%20of%20virulence%20in%20populations%20with%20a%20distributed%20parasite%20load&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Sandhu,%20Simran%20K.&rft.date=2020-01-01&rft.volume=80&rft.issue=1-2&rft.spage=111&rft.epage=141&rft.pages=111-141&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-019-01351-6&rft_dat=%3Cproquest_pubme%3E2207935600%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206833227&rft_id=info:pmid/30972437&rfr_iscdi=true