The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes
The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads...
Gespeichert in:
Veröffentlicht in: | Plant signaling & behavior 2020-01, Vol.15 (1), p.1694224-1694224, Article 1694224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1694224 |
---|---|
container_issue | 1 |
container_start_page | 1694224 |
container_title | Plant signaling & behavior |
container_volume | 15 |
creator | Choi, Junsik Richards, Eric J. |
description | The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants. |
doi_str_mv | 10.1080/15592324.2019.1694224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317596330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtR3HX1Jyg5CtJjPruTi7g0fsGiICt6C-mkeibSnYxJt8v-e9PO7KAX8ZRK1fNWKvVW1VOCNwRL_JIIoSijfEMxURvSKE4pv1edr_l6Ldw_xaQ5qx7l_B1jzlqMH1ZnjLSCCsnPq2_XO0ApjoDigLrPXz-isNgRTEL7FGfwISMfkN2lOJnZh7o3GRxKsF3Gco9hleU5Qc4lmfcxZEBbCJAfVw8GM2Z4cjwvqi9v31x37-urT-8-dJdXtRWMz7XDTBKK5cB53wgQzAySqd4RI3sn24bzhjvFpeXOQl8kTvVWEQq0x41wkl1Urw5990s_QYHCnMyo98lPJt3qaLz-uxL8Tm_jT91iQklLS4PnxwYp_lggz3ry2cI4mgBxyZquy1INY7ig4oDaFHNOMJyeIVivrug7V_Tqij66UnTP_pzxpLqzoQDyANxAH4dsPQQLJwwX45QkvCUlwqTz8-_Vd3EJc5G--H9poV8faB-GmCZzE9Po9Gxux5iGZIL1uUz1z8_8AuRhvdU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317596330</pqid></control><display><type>article</type><title>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Choi, Junsik ; Richards, Eric J.</creator><creatorcontrib>Choi, Junsik ; Richards, Eric J.</creatorcontrib><description>The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.</description><identifier>ISSN: 1559-2316</identifier><identifier>ISSN: 1559-2324</identifier><identifier>EISSN: 1559-2324</identifier><identifier>DOI: 10.1080/15592324.2019.1694224</identifier><identifier>PMID: 31752584</identifier><language>eng</language><publisher>PHILADELPHIA: Taylor & Francis</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biochemistry & Molecular Biology ; Chromatin - genetics ; Chromatin - metabolism ; Gene Expression Regulation, Plant ; histone H3K27me3 ; Histones - metabolism ; Life Sciences & Biomedicine ; nuclear lamina ; Nuclear organization ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Plant Sciences ; Science & Technology ; Short Communication ; stress response ; Transcription Factors - metabolism</subject><ispartof>Plant signaling & behavior, 2020-01, Vol.15 (1), p.1694224-1694224, Article 1694224</ispartof><rights>2019 Taylor & Francis Group, LLC 2019</rights><rights>2019 Taylor & Francis Group, LLC 2019 Taylor & Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000498147100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</citedby><cites>FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</cites><orcidid>0000-0002-8665-7470 ; 0000-0002-7122-3290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012172/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012172/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31752584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Junsik</creatorcontrib><creatorcontrib>Richards, Eric J.</creatorcontrib><title>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</title><title>Plant signaling & behavior</title><addtitle>PLANT SIGNAL BEHAV</addtitle><addtitle>Plant Signal Behav</addtitle><description>The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biochemistry & Molecular Biology</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>histone H3K27me3</subject><subject>Histones - metabolism</subject><subject>Life Sciences & Biomedicine</subject><subject>nuclear lamina</subject><subject>Nuclear organization</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Science & Technology</subject><subject>Short Communication</subject><subject>stress response</subject><subject>Transcription Factors - metabolism</subject><issn>1559-2316</issn><issn>1559-2324</issn><issn>1559-2324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhhtR3HX1Jyg5CtJjPruTi7g0fsGiICt6C-mkeibSnYxJt8v-e9PO7KAX8ZRK1fNWKvVW1VOCNwRL_JIIoSijfEMxURvSKE4pv1edr_l6Ldw_xaQ5qx7l_B1jzlqMH1ZnjLSCCsnPq2_XO0ApjoDigLrPXz-isNgRTEL7FGfwISMfkN2lOJnZh7o3GRxKsF3Gco9hleU5Qc4lmfcxZEBbCJAfVw8GM2Z4cjwvqi9v31x37-urT-8-dJdXtRWMz7XDTBKK5cB53wgQzAySqd4RI3sn24bzhjvFpeXOQl8kTvVWEQq0x41wkl1Urw5990s_QYHCnMyo98lPJt3qaLz-uxL8Tm_jT91iQklLS4PnxwYp_lggz3ry2cI4mgBxyZquy1INY7ig4oDaFHNOMJyeIVivrug7V_Tqij66UnTP_pzxpLqzoQDyANxAH4dsPQQLJwwX45QkvCUlwqTz8-_Vd3EJc5G--H9poV8faB-GmCZzE9Po9Gxux5iGZIL1uUz1z8_8AuRhvdU</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Choi, Junsik</creator><creator>Richards, Eric J.</creator><general>Taylor & Francis</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8665-7470</orcidid><orcidid>https://orcid.org/0000-0002-7122-3290</orcidid></search><sort><creationdate>20200102</creationdate><title>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</title><author>Choi, Junsik ; Richards, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biochemistry & Molecular Biology</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>histone H3K27me3</topic><topic>Histones - metabolism</topic><topic>Life Sciences & Biomedicine</topic><topic>nuclear lamina</topic><topic>Nuclear organization</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Science & Technology</topic><topic>Short Communication</topic><topic>stress response</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Junsik</creatorcontrib><creatorcontrib>Richards, Eric J.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant signaling & behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Junsik</au><au>Richards, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</atitle><jtitle>Plant signaling & behavior</jtitle><stitle>PLANT SIGNAL BEHAV</stitle><addtitle>Plant Signal Behav</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>1694224</spage><epage>1694224</epage><pages>1694224-1694224</pages><artnum>1694224</artnum><issn>1559-2316</issn><issn>1559-2324</issn><eissn>1559-2324</eissn><abstract>The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.</abstract><cop>PHILADELPHIA</cop><pub>Taylor & Francis</pub><pmid>31752584</pmid><doi>10.1080/15592324.2019.1694224</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-8665-7470</orcidid><orcidid>https://orcid.org/0000-0002-7122-3290</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-2316 |
ispartof | Plant signaling & behavior, 2020-01, Vol.15 (1), p.1694224-1694224, Article 1694224 |
issn | 1559-2316 1559-2324 1559-2324 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012172 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biochemistry & Molecular Biology Chromatin - genetics Chromatin - metabolism Gene Expression Regulation, Plant histone H3K27me3 Histones - metabolism Life Sciences & Biomedicine nuclear lamina Nuclear organization Nuclear Proteins - genetics Nuclear Proteins - metabolism Plant Sciences Science & Technology Short Communication stress response Transcription Factors - metabolism |
title | The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20CRWN%20nuclear%20proteins%20in%20chromatin-based%20regulation%20of%20stress%20response%20genes&rft.jtitle=Plant%20signaling%20&%20behavior&rft.au=Choi,%20Junsik&rft.date=2020-01-02&rft.volume=15&rft.issue=1&rft.spage=1694224&rft.epage=1694224&rft.pages=1694224-1694224&rft.artnum=1694224&rft.issn=1559-2316&rft.eissn=1559-2324&rft_id=info:doi/10.1080/15592324.2019.1694224&rft_dat=%3Cproquest_pubme%3E2317596330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317596330&rft_id=info:pmid/31752584&rfr_iscdi=true |