The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes

The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant signaling & behavior 2020-01, Vol.15 (1), p.1694224-1694224, Article 1694224
Hauptverfasser: Choi, Junsik, Richards, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1694224
container_issue 1
container_start_page 1694224
container_title Plant signaling & behavior
container_volume 15
creator Choi, Junsik
Richards, Eric J.
description The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.
doi_str_mv 10.1080/15592324.2019.1694224
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317596330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtR3HX1Jyg5CtJjPruTi7g0fsGiICt6C-mkeibSnYxJt8v-e9PO7KAX8ZRK1fNWKvVW1VOCNwRL_JIIoSijfEMxURvSKE4pv1edr_l6Ldw_xaQ5qx7l_B1jzlqMH1ZnjLSCCsnPq2_XO0ApjoDigLrPXz-isNgRTEL7FGfwISMfkN2lOJnZh7o3GRxKsF3Gco9hleU5Qc4lmfcxZEBbCJAfVw8GM2Z4cjwvqi9v31x37-urT-8-dJdXtRWMz7XDTBKK5cB53wgQzAySqd4RI3sn24bzhjvFpeXOQl8kTvVWEQq0x41wkl1Urw5990s_QYHCnMyo98lPJt3qaLz-uxL8Tm_jT91iQklLS4PnxwYp_lggz3ry2cI4mgBxyZquy1INY7ig4oDaFHNOMJyeIVivrug7V_Tqij66UnTP_pzxpLqzoQDyANxAH4dsPQQLJwwX45QkvCUlwqTz8-_Vd3EJc5G--H9poV8faB-GmCZzE9Po9Gxux5iGZIL1uUz1z8_8AuRhvdU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317596330</pqid></control><display><type>article</type><title>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Choi, Junsik ; Richards, Eric J.</creator><creatorcontrib>Choi, Junsik ; Richards, Eric J.</creatorcontrib><description>The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.</description><identifier>ISSN: 1559-2316</identifier><identifier>ISSN: 1559-2324</identifier><identifier>EISSN: 1559-2324</identifier><identifier>DOI: 10.1080/15592324.2019.1694224</identifier><identifier>PMID: 31752584</identifier><language>eng</language><publisher>PHILADELPHIA: Taylor &amp; Francis</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biochemistry &amp; Molecular Biology ; Chromatin - genetics ; Chromatin - metabolism ; Gene Expression Regulation, Plant ; histone H3K27me3 ; Histones - metabolism ; Life Sciences &amp; Biomedicine ; nuclear lamina ; Nuclear organization ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Plant Sciences ; Science &amp; Technology ; Short Communication ; stress response ; Transcription Factors - metabolism</subject><ispartof>Plant signaling &amp; behavior, 2020-01, Vol.15 (1), p.1694224-1694224, Article 1694224</ispartof><rights>2019 Taylor &amp; Francis Group, LLC 2019</rights><rights>2019 Taylor &amp; Francis Group, LLC 2019 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000498147100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</citedby><cites>FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</cites><orcidid>0000-0002-8665-7470 ; 0000-0002-7122-3290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012172/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012172/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31752584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Junsik</creatorcontrib><creatorcontrib>Richards, Eric J.</creatorcontrib><title>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</title><title>Plant signaling &amp; behavior</title><addtitle>PLANT SIGNAL BEHAV</addtitle><addtitle>Plant Signal Behav</addtitle><description>The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>histone H3K27me3</subject><subject>Histones - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>nuclear lamina</subject><subject>Nuclear organization</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Science &amp; Technology</subject><subject>Short Communication</subject><subject>stress response</subject><subject>Transcription Factors - metabolism</subject><issn>1559-2316</issn><issn>1559-2324</issn><issn>1559-2324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhhtR3HX1Jyg5CtJjPruTi7g0fsGiICt6C-mkeibSnYxJt8v-e9PO7KAX8ZRK1fNWKvVW1VOCNwRL_JIIoSijfEMxURvSKE4pv1edr_l6Ldw_xaQ5qx7l_B1jzlqMH1ZnjLSCCsnPq2_XO0ApjoDigLrPXz-isNgRTEL7FGfwISMfkN2lOJnZh7o3GRxKsF3Gco9hleU5Qc4lmfcxZEBbCJAfVw8GM2Z4cjwvqi9v31x37-urT-8-dJdXtRWMz7XDTBKK5cB53wgQzAySqd4RI3sn24bzhjvFpeXOQl8kTvVWEQq0x41wkl1Urw5990s_QYHCnMyo98lPJt3qaLz-uxL8Tm_jT91iQklLS4PnxwYp_lggz3ry2cI4mgBxyZquy1INY7ig4oDaFHNOMJyeIVivrug7V_Tqij66UnTP_pzxpLqzoQDyANxAH4dsPQQLJwwX45QkvCUlwqTz8-_Vd3EJc5G--H9poV8faB-GmCZzE9Po9Gxux5iGZIL1uUz1z8_8AuRhvdU</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Choi, Junsik</creator><creator>Richards, Eric J.</creator><general>Taylor &amp; Francis</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8665-7470</orcidid><orcidid>https://orcid.org/0000-0002-7122-3290</orcidid></search><sort><creationdate>20200102</creationdate><title>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</title><author>Choi, Junsik ; Richards, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-d0381208f44b65e53af839bd1a8bd8764464d948c4dceb534d9bc912e2b065d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>histone H3K27me3</topic><topic>Histones - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>nuclear lamina</topic><topic>Nuclear organization</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Science &amp; Technology</topic><topic>Short Communication</topic><topic>stress response</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Junsik</creatorcontrib><creatorcontrib>Richards, Eric J.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant signaling &amp; behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Junsik</au><au>Richards, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes</atitle><jtitle>Plant signaling &amp; behavior</jtitle><stitle>PLANT SIGNAL BEHAV</stitle><addtitle>Plant Signal Behav</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>1694224</spage><epage>1694224</epage><pages>1694224-1694224</pages><artnum>1694224</artnum><issn>1559-2316</issn><issn>1559-2324</issn><eissn>1559-2324</eissn><abstract>The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.</abstract><cop>PHILADELPHIA</cop><pub>Taylor &amp; Francis</pub><pmid>31752584</pmid><doi>10.1080/15592324.2019.1694224</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-8665-7470</orcidid><orcidid>https://orcid.org/0000-0002-7122-3290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-2316
ispartof Plant signaling & behavior, 2020-01, Vol.15 (1), p.1694224-1694224, Article 1694224
issn 1559-2316
1559-2324
1559-2324
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012172
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biochemistry & Molecular Biology
Chromatin - genetics
Chromatin - metabolism
Gene Expression Regulation, Plant
histone H3K27me3
Histones - metabolism
Life Sciences & Biomedicine
nuclear lamina
Nuclear organization
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Plant Sciences
Science & Technology
Short Communication
stress response
Transcription Factors - metabolism
title The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20CRWN%20nuclear%20proteins%20in%20chromatin-based%20regulation%20of%20stress%20response%20genes&rft.jtitle=Plant%20signaling%20&%20behavior&rft.au=Choi,%20Junsik&rft.date=2020-01-02&rft.volume=15&rft.issue=1&rft.spage=1694224&rft.epage=1694224&rft.pages=1694224-1694224&rft.artnum=1694224&rft.issn=1559-2316&rft.eissn=1559-2324&rft_id=info:doi/10.1080/15592324.2019.1694224&rft_dat=%3Cproquest_pubme%3E2317596330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317596330&rft_id=info:pmid/31752584&rfr_iscdi=true