DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces

The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-08, Vol.123 (32), p.19453-19467
Hauptverfasser: Jossou, Ericmoore, Malakkal, Linu, Dzade, Nelson Y, Claisse, Antoine, Szpunar, Barbara, Szpunar, Jerzy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19467
container_issue 32
container_start_page 19453
container_title Journal of physical chemistry. C
container_volume 123
creator Jossou, Ericmoore
Malakkal, Linu
Dzade, Nelson Y
Claisse, Antoine
Szpunar, Barbara
Szpunar, Jerzy
description The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} > U3Si2{110} > U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.
doi_str_mv 10.1021/acs.jpcc.9b03076
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356574575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-ca0c0d9e285a58c0a199949e6564bf7f5df705acda3d76db64661ac64c53c7f13</originalsourceid><addsrcrecordid>eNqNkc1rGzEQxUVpadKk9x51LNTr6mMleS-FYDdNIJCDY3oUY2k2kVmv3NWuiQk-99-uaptCbznNY-bHg3mPkE-cjTkT_Cu4NF5tnBtXSyaZ0W_IOa-kKEyp1Nt_ujRn5ENKK8aUZFy-J2dSMF1meU5-z64f6Be6oPN-8Dsaa9o_Ib3yKXabPsSWQuvpLKQUXYDDIiM_oceOZj1tENoRnWGNrg9bHB3w--fdI7bFNG6xQ08Xch7EC2N8P6IvnLP9kcqS7-l86GpwmC7JuxqahB9P84Isrr8_TG-Ku_sft9OruwKEmPSFA-aYr1BMFKiJY8Crqior1EqXy9rUyteGKXAepDfaL3WpNQenS6ekMzWXF-Tb0XczLNfoHbZ9B43ddGEN3c5GCPb_Sxue7GPcWsM4N1pkg88ngy7-GjD1dh2Sw6aBFuOQrJBKq5y_Ua9AucqPVOUko6Mjmhu1qzh0bQ7Bcmb_1mwPy1yzPdUs_wBIgpm6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315285948</pqid></control><display><type>article</type><title>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</title><source>ACS Publications</source><creator>Jossou, Ericmoore ; Malakkal, Linu ; Dzade, Nelson Y ; Claisse, Antoine ; Szpunar, Barbara ; Szpunar, Jerzy</creator><creatorcontrib>Jossou, Ericmoore ; Malakkal, Linu ; Dzade, Nelson Y ; Claisse, Antoine ; Szpunar, Barbara ; Szpunar, Jerzy</creatorcontrib><description>The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} &gt; U3Si2{110} &gt; U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b03076</identifier><identifier>PMID: 32064013</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>adsorption ; corrosion ; density functional theory ; dissociation ; hydrogen ; nuclear fuels ; oxidation ; oxygen ; thermodynamics</subject><ispartof>Journal of physical chemistry. C, 2019-08, Vol.123 (32), p.19453-19467</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4792-760X ; 0000-0001-7733-9473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b03076$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b03076$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Jossou, Ericmoore</creatorcontrib><creatorcontrib>Malakkal, Linu</creatorcontrib><creatorcontrib>Dzade, Nelson Y</creatorcontrib><creatorcontrib>Claisse, Antoine</creatorcontrib><creatorcontrib>Szpunar, Barbara</creatorcontrib><creatorcontrib>Szpunar, Jerzy</creatorcontrib><title>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} &gt; U3Si2{110} &gt; U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.</description><subject>adsorption</subject><subject>corrosion</subject><subject>density functional theory</subject><subject>dissociation</subject><subject>hydrogen</subject><subject>nuclear fuels</subject><subject>oxidation</subject><subject>oxygen</subject><subject>thermodynamics</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc1rGzEQxUVpadKk9x51LNTr6mMleS-FYDdNIJCDY3oUY2k2kVmv3NWuiQk-99-uaptCbznNY-bHg3mPkE-cjTkT_Cu4NF5tnBtXSyaZ0W_IOa-kKEyp1Nt_ujRn5ENKK8aUZFy-J2dSMF1meU5-z64f6Be6oPN-8Dsaa9o_Ib3yKXabPsSWQuvpLKQUXYDDIiM_oceOZj1tENoRnWGNrg9bHB3w--fdI7bFNG6xQ08Xch7EC2N8P6IvnLP9kcqS7-l86GpwmC7JuxqahB9P84Isrr8_TG-Ku_sft9OruwKEmPSFA-aYr1BMFKiJY8Crqior1EqXy9rUyteGKXAepDfaL3WpNQenS6ekMzWXF-Tb0XczLNfoHbZ9B43ddGEN3c5GCPb_Sxue7GPcWsM4N1pkg88ngy7-GjD1dh2Sw6aBFuOQrJBKq5y_Ua9AucqPVOUko6Mjmhu1qzh0bQ7Bcmb_1mwPy1yzPdUs_wBIgpm6</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Jossou, Ericmoore</creator><creator>Malakkal, Linu</creator><creator>Dzade, Nelson Y</creator><creator>Claisse, Antoine</creator><creator>Szpunar, Barbara</creator><creator>Szpunar, Jerzy</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4792-760X</orcidid><orcidid>https://orcid.org/0000-0001-7733-9473</orcidid></search><sort><creationdate>20190815</creationdate><title>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</title><author>Jossou, Ericmoore ; Malakkal, Linu ; Dzade, Nelson Y ; Claisse, Antoine ; Szpunar, Barbara ; Szpunar, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-ca0c0d9e285a58c0a199949e6564bf7f5df705acda3d76db64661ac64c53c7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adsorption</topic><topic>corrosion</topic><topic>density functional theory</topic><topic>dissociation</topic><topic>hydrogen</topic><topic>nuclear fuels</topic><topic>oxidation</topic><topic>oxygen</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jossou, Ericmoore</creatorcontrib><creatorcontrib>Malakkal, Linu</creatorcontrib><creatorcontrib>Dzade, Nelson Y</creatorcontrib><creatorcontrib>Claisse, Antoine</creatorcontrib><creatorcontrib>Szpunar, Barbara</creatorcontrib><creatorcontrib>Szpunar, Jerzy</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jossou, Ericmoore</au><au>Malakkal, Linu</au><au>Dzade, Nelson Y</au><au>Claisse, Antoine</au><au>Szpunar, Barbara</au><au>Szpunar, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>123</volume><issue>32</issue><spage>19453</spage><epage>19467</epage><pages>19453-19467</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} &gt; U3Si2{110} &gt; U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.</abstract><pub>American Chemical Society</pub><pmid>32064013</pmid><doi>10.1021/acs.jpcc.9b03076</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4792-760X</orcidid><orcidid>https://orcid.org/0000-0001-7733-9473</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-08, Vol.123 (32), p.19453-19467
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011762
source ACS Publications
subjects adsorption
corrosion
density functional theory
dissociation
hydrogen
nuclear fuels
oxidation
oxygen
thermodynamics
title DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20+%20U%20Study%20of%20the%20Adsorption%20and%20Dissociation%20of%20Water%20on%20Clean,%20Defective,%20and%20Oxygen-Covered%20U3Si2%7B001%7D,%20%7B110%7D,%20and%20%7B111%7D%20Surfaces&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Jossou,%20Ericmoore&rft.date=2019-08-15&rft.volume=123&rft.issue=32&rft.spage=19453&rft.epage=19467&rft.pages=19453-19467&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b03076&rft_dat=%3Cproquest_pubme%3E2356574575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315285948&rft_id=info:pmid/32064013&rfr_iscdi=true