DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces
The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully und...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2019-08, Vol.123 (32), p.19453-19467 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19467 |
---|---|
container_issue | 32 |
container_start_page | 19453 |
container_title | Journal of physical chemistry. C |
container_volume | 123 |
creator | Jossou, Ericmoore Malakkal, Linu Dzade, Nelson Y Claisse, Antoine Szpunar, Barbara Szpunar, Jerzy |
description | The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} > U3Si2{110} > U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces. |
doi_str_mv | 10.1021/acs.jpcc.9b03076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356574575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-ca0c0d9e285a58c0a199949e6564bf7f5df705acda3d76db64661ac64c53c7f13</originalsourceid><addsrcrecordid>eNqNkc1rGzEQxUVpadKk9x51LNTr6mMleS-FYDdNIJCDY3oUY2k2kVmv3NWuiQk-99-uaptCbznNY-bHg3mPkE-cjTkT_Cu4NF5tnBtXSyaZ0W_IOa-kKEyp1Nt_ujRn5ENKK8aUZFy-J2dSMF1meU5-z64f6Be6oPN-8Dsaa9o_Ib3yKXabPsSWQuvpLKQUXYDDIiM_oceOZj1tENoRnWGNrg9bHB3w--fdI7bFNG6xQ08Xch7EC2N8P6IvnLP9kcqS7-l86GpwmC7JuxqahB9P84Isrr8_TG-Ku_sft9OruwKEmPSFA-aYr1BMFKiJY8Crqior1EqXy9rUyteGKXAepDfaL3WpNQenS6ekMzWXF-Tb0XczLNfoHbZ9B43ddGEN3c5GCPb_Sxue7GPcWsM4N1pkg88ngy7-GjD1dh2Sw6aBFuOQrJBKq5y_Ua9AucqPVOUko6Mjmhu1qzh0bQ7Bcmb_1mwPy1yzPdUs_wBIgpm6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315285948</pqid></control><display><type>article</type><title>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</title><source>ACS Publications</source><creator>Jossou, Ericmoore ; Malakkal, Linu ; Dzade, Nelson Y ; Claisse, Antoine ; Szpunar, Barbara ; Szpunar, Jerzy</creator><creatorcontrib>Jossou, Ericmoore ; Malakkal, Linu ; Dzade, Nelson Y ; Claisse, Antoine ; Szpunar, Barbara ; Szpunar, Jerzy</creatorcontrib><description>The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} > U3Si2{110} > U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b03076</identifier><identifier>PMID: 32064013</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>adsorption ; corrosion ; density functional theory ; dissociation ; hydrogen ; nuclear fuels ; oxidation ; oxygen ; thermodynamics</subject><ispartof>Journal of physical chemistry. C, 2019-08, Vol.123 (32), p.19453-19467</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4792-760X ; 0000-0001-7733-9473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b03076$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b03076$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Jossou, Ericmoore</creatorcontrib><creatorcontrib>Malakkal, Linu</creatorcontrib><creatorcontrib>Dzade, Nelson Y</creatorcontrib><creatorcontrib>Claisse, Antoine</creatorcontrib><creatorcontrib>Szpunar, Barbara</creatorcontrib><creatorcontrib>Szpunar, Jerzy</creatorcontrib><title>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} > U3Si2{110} > U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.</description><subject>adsorption</subject><subject>corrosion</subject><subject>density functional theory</subject><subject>dissociation</subject><subject>hydrogen</subject><subject>nuclear fuels</subject><subject>oxidation</subject><subject>oxygen</subject><subject>thermodynamics</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc1rGzEQxUVpadKk9x51LNTr6mMleS-FYDdNIJCDY3oUY2k2kVmv3NWuiQk-99-uaptCbznNY-bHg3mPkE-cjTkT_Cu4NF5tnBtXSyaZ0W_IOa-kKEyp1Nt_ujRn5ENKK8aUZFy-J2dSMF1meU5-z64f6Be6oPN-8Dsaa9o_Ib3yKXabPsSWQuvpLKQUXYDDIiM_oceOZj1tENoRnWGNrg9bHB3w--fdI7bFNG6xQ08Xch7EC2N8P6IvnLP9kcqS7-l86GpwmC7JuxqahB9P84Isrr8_TG-Ku_sft9OruwKEmPSFA-aYr1BMFKiJY8Crqior1EqXy9rUyteGKXAepDfaL3WpNQenS6ekMzWXF-Tb0XczLNfoHbZ9B43ddGEN3c5GCPb_Sxue7GPcWsM4N1pkg88ngy7-GjD1dh2Sw6aBFuOQrJBKq5y_Ua9AucqPVOUko6Mjmhu1qzh0bQ7Bcmb_1mwPy1yzPdUs_wBIgpm6</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Jossou, Ericmoore</creator><creator>Malakkal, Linu</creator><creator>Dzade, Nelson Y</creator><creator>Claisse, Antoine</creator><creator>Szpunar, Barbara</creator><creator>Szpunar, Jerzy</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4792-760X</orcidid><orcidid>https://orcid.org/0000-0001-7733-9473</orcidid></search><sort><creationdate>20190815</creationdate><title>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</title><author>Jossou, Ericmoore ; Malakkal, Linu ; Dzade, Nelson Y ; Claisse, Antoine ; Szpunar, Barbara ; Szpunar, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-ca0c0d9e285a58c0a199949e6564bf7f5df705acda3d76db64661ac64c53c7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adsorption</topic><topic>corrosion</topic><topic>density functional theory</topic><topic>dissociation</topic><topic>hydrogen</topic><topic>nuclear fuels</topic><topic>oxidation</topic><topic>oxygen</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jossou, Ericmoore</creatorcontrib><creatorcontrib>Malakkal, Linu</creatorcontrib><creatorcontrib>Dzade, Nelson Y</creatorcontrib><creatorcontrib>Claisse, Antoine</creatorcontrib><creatorcontrib>Szpunar, Barbara</creatorcontrib><creatorcontrib>Szpunar, Jerzy</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jossou, Ericmoore</au><au>Malakkal, Linu</au><au>Dzade, Nelson Y</au><au>Claisse, Antoine</au><au>Szpunar, Barbara</au><au>Szpunar, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>123</volume><issue>32</issue><spage>19453</spage><epage>19467</epage><pages>19453-19467</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>The interfacial interaction of U3Si2 with water leads to corrosion of nuclear fuels, which affects various processes in the nuclear fuel cycle. However, the mechanism and molecular-level insights into the early oxidation process of U3Si2 surfaces in the presence of water and oxygen are not fully understood. In this work, we present Hubbard-corrected density functional theory (DFT + U) calculations of the adsorption behavior of water on the low Miller indices of the pristine and defective surfaces as well as water dissociation and accompanied H2 formation mechanisms. The adsorption strength decreases in the order U3Si2{001} > U3Si2{110} > U3Si2{111} for both molecular and dissociative H2O adsorption. Consistent with the superior reactivity, dissociative water adsorption is most stable. We also explored the adsorption of H2O on the oxygen-covered U3Si2 surface and showed that the preadsorbed oxygen could activate the OH bond and speed up the dissociation of H2O. Generally, we found that during adsorption on the oxygen-covered, defective surface, multiple water molecules are thermodynamically more stable on the surface than the water monomer on the pristine surface. Mixed molecular and dissociative water adsorption modes are also noted to be stable on the {111} surface, whereas fully dissociative water adsorption is most stable on the {110} and {001} surfaces.</abstract><pub>American Chemical Society</pub><pmid>32064013</pmid><doi>10.1021/acs.jpcc.9b03076</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4792-760X</orcidid><orcidid>https://orcid.org/0000-0001-7733-9473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2019-08, Vol.123 (32), p.19453-19467 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011762 |
source | ACS Publications |
subjects | adsorption corrosion density functional theory dissociation hydrogen nuclear fuels oxidation oxygen thermodynamics |
title | DFT + U Study of the Adsorption and Dissociation of Water on Clean, Defective, and Oxygen-Covered U3Si2{001}, {110}, and {111} Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20+%20U%20Study%20of%20the%20Adsorption%20and%20Dissociation%20of%20Water%20on%20Clean,%20Defective,%20and%20Oxygen-Covered%20U3Si2%7B001%7D,%20%7B110%7D,%20and%20%7B111%7D%20Surfaces&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Jossou,%20Ericmoore&rft.date=2019-08-15&rft.volume=123&rft.issue=32&rft.spage=19453&rft.epage=19467&rft.pages=19453-19467&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b03076&rft_dat=%3Cproquest_pubme%3E2356574575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315285948&rft_id=info:pmid/32064013&rfr_iscdi=true |