Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death

We present here the differential analysis of metabolite–metabolite association networks constructed from an array of 24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123 died within 2 years from acute myocardial infarctio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2020-02, Vol.19 (2), p.949-961
Hauptverfasser: Vignoli, Alessia, Tenori, Leonardo, Giusti, Betti, Valente, Serafina, Carrabba, Nazario, Balzi, Daniela, Barchielli, Alessandro, Marchionni, Niccolò, Gensini, Gian Franco, Marcucci, Rossella, Gori, Anna Maria, Luchinat, Claudio, Saccenti, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 2
container_start_page 949
container_title Journal of proteome research
container_volume 19
creator Vignoli, Alessia
Tenori, Leonardo
Giusti, Betti
Valente, Serafina
Carrabba, Nazario
Balzi, Daniela
Barchielli, Alessandro
Marchionni, Niccolò
Gensini, Gian Franco
Marcucci, Rossella
Gori, Anna Maria
Luchinat, Claudio
Saccenti, Edoardo
description We present here the differential analysis of metabolite–metabolite association networks constructed from an array of 24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123 died within 2 years from acute myocardial infarction (AMI). We investigated differences in metabolite connectivity of patients who survived, at 2 years, the AMI event, and we characterized metabolite–metabolite association networks specific to high and low risks of death according to four different risk parameters, namely, acute coronary syndrome classification, Killip, Global Registry of Acute Coronary Events risk score, and metabolomics NOESY RF risk score. We show significant differences in the connectivity patterns of several low-molecular-weight molecules, implying variations in the regulation of several metabolic pathways regarding branched-chain amino acids, alanine, creatinine, mannose, ketone bodies, and energetic metabolism. Our results demonstrate that the characterization of metabolite–metabolite association networks is a promising and powerful tool to investigate AMI patients according to their outcomes at a molecular level.
doi_str_mv 10.1021/acs.jproteome.9b00779
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439436493</sourcerecordid><originalsourceid>FETCH-LOGICAL-a486t-34019f4557ba01f752b61b2f5ebc537048dbb0058d9958d90b83f53f909f1683</originalsourceid><addsrcrecordid>eNqNks1uEzEUhUcIREvhEUBeskmw4_F4vEGKUn4qNRDRsLY8nuvEZcZObU-reVZeBoekEaxgY_vK3z069-oUxWuCpwTPyDul4_R2F3wC38NUNBhzLp4U54RRNqEC86eP71rQs-JFjLcYE8YxfV6cUVILUVf0vPh5aY2BAC5Z1aEvkB58-IHmTnVjtBF9g3tQXURLSKrxndXoEhKE3jrlUkTzGL22KkGLHmzaoqUPSXU2jcg6NNdDArQcvVah3atfOaOCTtY7tFLJwl5BuRbdDJsNxFys8jQHI0vQW-Vs7CP67loI3WjdBp28okVnndUZvNE-QIZitrD2aBWgtTpllyptXxbPTDYPr473RbH--GG9-Dy5_vrpajG_nqiyrtKElpgIUzLGG4WJ4WzWVKSZGQaNZpTjsm6bvF5Wt0LsD9zU1DBqBBaGVDW9KN4fZHdD00Ors7-gOrkLtldhlF5Z-fePs1u58feSY0IIp1ng7VEg-Lshb0L2NmroOuXAD1HOSipKWpXiP1BKaYU5nfGMsgOqg48xgDk5IljuIyRzhOQpQvIYodz35s9xTl2PmckAOQC_-_0QcljiP0R_AbRa3dM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333607327</pqid></control><display><type>article</type><title>Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death</title><source>American Chemical Society Journals</source><creator>Vignoli, Alessia ; Tenori, Leonardo ; Giusti, Betti ; Valente, Serafina ; Carrabba, Nazario ; Balzi, Daniela ; Barchielli, Alessandro ; Marchionni, Niccolò ; Gensini, Gian Franco ; Marcucci, Rossella ; Gori, Anna Maria ; Luchinat, Claudio ; Saccenti, Edoardo</creator><creatorcontrib>Vignoli, Alessia ; Tenori, Leonardo ; Giusti, Betti ; Valente, Serafina ; Carrabba, Nazario ; Balzi, Daniela ; Barchielli, Alessandro ; Marchionni, Niccolò ; Gensini, Gian Franco ; Marcucci, Rossella ; Gori, Anna Maria ; Luchinat, Claudio ; Saccenti, Edoardo</creatorcontrib><description>We present here the differential analysis of metabolite–metabolite association networks constructed from an array of 24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123 died within 2 years from acute myocardial infarction (AMI). We investigated differences in metabolite connectivity of patients who survived, at 2 years, the AMI event, and we characterized metabolite–metabolite association networks specific to high and low risks of death according to four different risk parameters, namely, acute coronary syndrome classification, Killip, Global Registry of Acute Coronary Events risk score, and metabolomics NOESY RF risk score. We show significant differences in the connectivity patterns of several low-molecular-weight molecules, implying variations in the regulation of several metabolic pathways regarding branched-chain amino acids, alanine, creatinine, mannose, ketone bodies, and energetic metabolism. Our results demonstrate that the characterization of metabolite–metabolite association networks is a promising and powerful tool to investigate AMI patients according to their outcomes at a molecular level.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.9b00779</identifier><identifier>PMID: 31899863</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>alanine ; biochemical pathways ; blood serum ; branched chain amino acids ; creatinine ; ketone bodies ; mannose ; metabolism ; metabolomics ; mortality ; myocardial infarction ; nuclear magnetic resonance spectroscopy ; patients ; proteome ; risk</subject><ispartof>Journal of proteome research, 2020-02, Vol.19 (2), p.949-961</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a486t-34019f4557ba01f752b61b2f5ebc537048dbb0058d9958d90b83f53f909f1683</citedby><cites>FETCH-LOGICAL-a486t-34019f4557ba01f752b61b2f5ebc537048dbb0058d9958d90b83f53f909f1683</cites><orcidid>0000-0001-6438-059X ; 0000-0003-2271-8921 ; 0000-0002-5190-5227 ; 0000-0001-8284-4829 ; 0000-0003-4038-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.9b00779$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.9b00779$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31899863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vignoli, Alessia</creatorcontrib><creatorcontrib>Tenori, Leonardo</creatorcontrib><creatorcontrib>Giusti, Betti</creatorcontrib><creatorcontrib>Valente, Serafina</creatorcontrib><creatorcontrib>Carrabba, Nazario</creatorcontrib><creatorcontrib>Balzi, Daniela</creatorcontrib><creatorcontrib>Barchielli, Alessandro</creatorcontrib><creatorcontrib>Marchionni, Niccolò</creatorcontrib><creatorcontrib>Gensini, Gian Franco</creatorcontrib><creatorcontrib>Marcucci, Rossella</creatorcontrib><creatorcontrib>Gori, Anna Maria</creatorcontrib><creatorcontrib>Luchinat, Claudio</creatorcontrib><creatorcontrib>Saccenti, Edoardo</creatorcontrib><title>Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>We present here the differential analysis of metabolite–metabolite association networks constructed from an array of 24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123 died within 2 years from acute myocardial infarction (AMI). We investigated differences in metabolite connectivity of patients who survived, at 2 years, the AMI event, and we characterized metabolite–metabolite association networks specific to high and low risks of death according to four different risk parameters, namely, acute coronary syndrome classification, Killip, Global Registry of Acute Coronary Events risk score, and metabolomics NOESY RF risk score. We show significant differences in the connectivity patterns of several low-molecular-weight molecules, implying variations in the regulation of several metabolic pathways regarding branched-chain amino acids, alanine, creatinine, mannose, ketone bodies, and energetic metabolism. Our results demonstrate that the characterization of metabolite–metabolite association networks is a promising and powerful tool to investigate AMI patients according to their outcomes at a molecular level.</description><subject>alanine</subject><subject>biochemical pathways</subject><subject>blood serum</subject><subject>branched chain amino acids</subject><subject>creatinine</subject><subject>ketone bodies</subject><subject>mannose</subject><subject>metabolism</subject><subject>metabolomics</subject><subject>mortality</subject><subject>myocardial infarction</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>patients</subject><subject>proteome</subject><subject>risk</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNks1uEzEUhUcIREvhEUBeskmw4_F4vEGKUn4qNRDRsLY8nuvEZcZObU-reVZeBoekEaxgY_vK3z069-oUxWuCpwTPyDul4_R2F3wC38NUNBhzLp4U54RRNqEC86eP71rQs-JFjLcYE8YxfV6cUVILUVf0vPh5aY2BAC5Z1aEvkB58-IHmTnVjtBF9g3tQXURLSKrxndXoEhKE3jrlUkTzGL22KkGLHmzaoqUPSXU2jcg6NNdDArQcvVah3atfOaOCTtY7tFLJwl5BuRbdDJsNxFys8jQHI0vQW-Vs7CP67loI3WjdBp28okVnndUZvNE-QIZitrD2aBWgtTpllyptXxbPTDYPr473RbH--GG9-Dy5_vrpajG_nqiyrtKElpgIUzLGG4WJ4WzWVKSZGQaNZpTjsm6bvF5Wt0LsD9zU1DBqBBaGVDW9KN4fZHdD00Ors7-gOrkLtldhlF5Z-fePs1u58feSY0IIp1ng7VEg-Lshb0L2NmroOuXAD1HOSipKWpXiP1BKaYU5nfGMsgOqg48xgDk5IljuIyRzhOQpQvIYodz35s9xTl2PmckAOQC_-_0QcljiP0R_AbRa3dM</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Vignoli, Alessia</creator><creator>Tenori, Leonardo</creator><creator>Giusti, Betti</creator><creator>Valente, Serafina</creator><creator>Carrabba, Nazario</creator><creator>Balzi, Daniela</creator><creator>Barchielli, Alessandro</creator><creator>Marchionni, Niccolò</creator><creator>Gensini, Gian Franco</creator><creator>Marcucci, Rossella</creator><creator>Gori, Anna Maria</creator><creator>Luchinat, Claudio</creator><creator>Saccenti, Edoardo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6438-059X</orcidid><orcidid>https://orcid.org/0000-0003-2271-8921</orcidid><orcidid>https://orcid.org/0000-0002-5190-5227</orcidid><orcidid>https://orcid.org/0000-0001-8284-4829</orcidid><orcidid>https://orcid.org/0000-0003-4038-6596</orcidid></search><sort><creationdate>20200207</creationdate><title>Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death</title><author>Vignoli, Alessia ; Tenori, Leonardo ; Giusti, Betti ; Valente, Serafina ; Carrabba, Nazario ; Balzi, Daniela ; Barchielli, Alessandro ; Marchionni, Niccolò ; Gensini, Gian Franco ; Marcucci, Rossella ; Gori, Anna Maria ; Luchinat, Claudio ; Saccenti, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a486t-34019f4557ba01f752b61b2f5ebc537048dbb0058d9958d90b83f53f909f1683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alanine</topic><topic>biochemical pathways</topic><topic>blood serum</topic><topic>branched chain amino acids</topic><topic>creatinine</topic><topic>ketone bodies</topic><topic>mannose</topic><topic>metabolism</topic><topic>metabolomics</topic><topic>mortality</topic><topic>myocardial infarction</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>patients</topic><topic>proteome</topic><topic>risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignoli, Alessia</creatorcontrib><creatorcontrib>Tenori, Leonardo</creatorcontrib><creatorcontrib>Giusti, Betti</creatorcontrib><creatorcontrib>Valente, Serafina</creatorcontrib><creatorcontrib>Carrabba, Nazario</creatorcontrib><creatorcontrib>Balzi, Daniela</creatorcontrib><creatorcontrib>Barchielli, Alessandro</creatorcontrib><creatorcontrib>Marchionni, Niccolò</creatorcontrib><creatorcontrib>Gensini, Gian Franco</creatorcontrib><creatorcontrib>Marcucci, Rossella</creatorcontrib><creatorcontrib>Gori, Anna Maria</creatorcontrib><creatorcontrib>Luchinat, Claudio</creatorcontrib><creatorcontrib>Saccenti, Edoardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignoli, Alessia</au><au>Tenori, Leonardo</au><au>Giusti, Betti</au><au>Valente, Serafina</au><au>Carrabba, Nazario</au><au>Balzi, Daniela</au><au>Barchielli, Alessandro</au><au>Marchionni, Niccolò</au><au>Gensini, Gian Franco</au><au>Marcucci, Rossella</au><au>Gori, Anna Maria</au><au>Luchinat, Claudio</au><au>Saccenti, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>949</spage><epage>961</epage><pages>949-961</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>We present here the differential analysis of metabolite–metabolite association networks constructed from an array of 24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123 died within 2 years from acute myocardial infarction (AMI). We investigated differences in metabolite connectivity of patients who survived, at 2 years, the AMI event, and we characterized metabolite–metabolite association networks specific to high and low risks of death according to four different risk parameters, namely, acute coronary syndrome classification, Killip, Global Registry of Acute Coronary Events risk score, and metabolomics NOESY RF risk score. We show significant differences in the connectivity patterns of several low-molecular-weight molecules, implying variations in the regulation of several metabolic pathways regarding branched-chain amino acids, alanine, creatinine, mannose, ketone bodies, and energetic metabolism. Our results demonstrate that the characterization of metabolite–metabolite association networks is a promising and powerful tool to investigate AMI patients according to their outcomes at a molecular level.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31899863</pmid><doi>10.1021/acs.jproteome.9b00779</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6438-059X</orcidid><orcidid>https://orcid.org/0000-0003-2271-8921</orcidid><orcidid>https://orcid.org/0000-0002-5190-5227</orcidid><orcidid>https://orcid.org/0000-0001-8284-4829</orcidid><orcidid>https://orcid.org/0000-0003-4038-6596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2020-02, Vol.19 (2), p.949-961
issn 1535-3893
1535-3907
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011173
source American Chemical Society Journals
subjects alanine
biochemical pathways
blood serum
branched chain amino acids
creatinine
ketone bodies
mannose
metabolism
metabolomics
mortality
myocardial infarction
nuclear magnetic resonance spectroscopy
patients
proteome
risk
title Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Network%20Analysis%20Reveals%20Metabolic%20Determinants%20Associated%20with%20Mortality%20in%20Acute%20Myocardial%20Infarction%20Patients%20and%20Suggests%20Potential%20Mechanisms%20Underlying%20Different%20Clinical%20Scores%20Used%20To%20Predict%20Death&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Vignoli,%20Alessia&rft.date=2020-02-07&rft.volume=19&rft.issue=2&rft.spage=949&rft.epage=961&rft.pages=949-961&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.9b00779&rft_dat=%3Cproquest_pubme%3E2439436493%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333607327&rft_id=info:pmid/31899863&rfr_iscdi=true