An outcome model for human bladder cancer: A comprehensive study based on weighted gene co‐expression network analysis
The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2020-02, Vol.24 (3), p.2342-2355 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2355 |
---|---|
container_issue | 3 |
container_start_page | 2342 |
container_title | Journal of cellular and molecular medicine |
container_volume | 24 |
creator | Xiong, Yaoyi Yuan, Lushun Xiong, Jing Xu, Huimin Luo, Yongwen Wang, Gang Ju, Lingao Xiao, Yu Wang, Xinghuan |
description | The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making. |
doi_str_mv | 10.1111/jcmm.14918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331249581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-7f97935fd4727cf1bc563405bfecc2d224770d2fb08c6d3a12efa080c7ad87143</originalsourceid><addsrcrecordid>eNp90ctuEzEUBuARoqIX2PAAyBIbhJTi28QeFkhRxKVVKzawtjz2ceIwYwd7pml2fQSekSfBaUIFLPDGRzqffh37VNVzgs9JOW9Wpu_PCW-IfFSdkFrSCW8Yf3yoiWTyuDrNeYUxmxLWPKmOGZGSMdycVLezgOI4mNgD6qOFDrmY0HLsdUBtp62FhIwOBtJbNEOFrRMsIWR_AygPo92iVmewKAa0Ab9YDqVeQIBCf979gNvCc_alG2DYxPQN6aC7bfb5aXXkdJfh2eE-q75-eP9l_mly9fnjxXx2NTGcSzkRrhENq53lggrjSGvqKeO4bh0YQy2lXAhsqWuxNFPLNKHgNJbYCG2lIJydVe_2ueux7cEaCEPSnVon3-u0VVF79Xcn-KVaxBslcPlbTkvAq0NAit9HyIPqfTbQdTpAHLOijBHKm1qSQl_-Q1dxTOXBO1XThjKBWVGv98qkmHMC9zAMwWq3ULVbqLpfaMEv_hz_gf7eYAFkDza-g-1_otTl_Pp6H_oL20aumw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352923703</pqid></control><display><type>article</type><title>An outcome model for human bladder cancer: A comprehensive study based on weighted gene co‐expression network analysis</title><source>MEDLINE</source><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed (Medline)</source><source>Wiley Online Library Open Access</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Xiong, Yaoyi ; Yuan, Lushun ; Xiong, Jing ; Xu, Huimin ; Luo, Yongwen ; Wang, Gang ; Ju, Lingao ; Xiao, Yu ; Wang, Xinghuan</creator><creatorcontrib>Xiong, Yaoyi ; Yuan, Lushun ; Xiong, Jing ; Xu, Huimin ; Luo, Yongwen ; Wang, Gang ; Ju, Lingao ; Xiao, Yu ; Wang, Xinghuan</creatorcontrib><description>The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.14918</identifier><identifier>PMID: 31883309</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Accuracy ; Bioinformatics ; Biomarkers ; Bladder cancer ; Cancer ; Computational Biology - methods ; Datasets ; Decision making ; Disease Progression ; Gene expression ; Gene Expression Omnibus (GEO) ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - genetics ; Humans ; LASSO ; Medical prognosis ; Multivariate Analysis ; Nomograms ; Original ; Patients ; Performance evaluation ; Prognosis ; Proportional Hazards Models ; Regression Analysis ; Researchers ; Software ; Survival analysis ; Urinary Bladder Neoplasms - genetics ; Urinary Bladder Neoplasms - pathology ; WGCNA</subject><ispartof>Journal of cellular and molecular medicine, 2020-02, Vol.24 (3), p.2342-2355</ispartof><rights>2019 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2019 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4488-7f97935fd4727cf1bc563405bfecc2d224770d2fb08c6d3a12efa080c7ad87143</citedby><cites>FETCH-LOGICAL-c4488-7f97935fd4727cf1bc563405bfecc2d224770d2fb08c6d3a12efa080c7ad87143</cites><orcidid>0000-0003-1377-9685 ; 0000-0003-3497-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011142/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011142/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31883309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Yaoyi</creatorcontrib><creatorcontrib>Yuan, Lushun</creatorcontrib><creatorcontrib>Xiong, Jing</creatorcontrib><creatorcontrib>Xu, Huimin</creatorcontrib><creatorcontrib>Luo, Yongwen</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Ju, Lingao</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Wang, Xinghuan</creatorcontrib><title>An outcome model for human bladder cancer: A comprehensive study based on weighted gene co‐expression network analysis</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.</description><subject>Accuracy</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Bladder cancer</subject><subject>Cancer</subject><subject>Computational Biology - methods</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Disease Progression</subject><subject>Gene expression</subject><subject>Gene Expression Omnibus (GEO)</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Humans</subject><subject>LASSO</subject><subject>Medical prognosis</subject><subject>Multivariate Analysis</subject><subject>Nomograms</subject><subject>Original</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Prognosis</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Researchers</subject><subject>Software</subject><subject>Survival analysis</subject><subject>Urinary Bladder Neoplasms - genetics</subject><subject>Urinary Bladder Neoplasms - pathology</subject><subject>WGCNA</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90ctuEzEUBuARoqIX2PAAyBIbhJTi28QeFkhRxKVVKzawtjz2ceIwYwd7pml2fQSekSfBaUIFLPDGRzqffh37VNVzgs9JOW9Wpu_PCW-IfFSdkFrSCW8Yf3yoiWTyuDrNeYUxmxLWPKmOGZGSMdycVLezgOI4mNgD6qOFDrmY0HLsdUBtp62FhIwOBtJbNEOFrRMsIWR_AygPo92iVmewKAa0Ab9YDqVeQIBCf979gNvCc_alG2DYxPQN6aC7bfb5aXXkdJfh2eE-q75-eP9l_mly9fnjxXx2NTGcSzkRrhENq53lggrjSGvqKeO4bh0YQy2lXAhsqWuxNFPLNKHgNJbYCG2lIJydVe_2ueux7cEaCEPSnVon3-u0VVF79Xcn-KVaxBslcPlbTkvAq0NAit9HyIPqfTbQdTpAHLOijBHKm1qSQl_-Q1dxTOXBO1XThjKBWVGv98qkmHMC9zAMwWq3ULVbqLpfaMEv_hz_gf7eYAFkDza-g-1_otTl_Pp6H_oL20aumw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Xiong, Yaoyi</creator><creator>Yuan, Lushun</creator><creator>Xiong, Jing</creator><creator>Xu, Huimin</creator><creator>Luo, Yongwen</creator><creator>Wang, Gang</creator><creator>Ju, Lingao</creator><creator>Xiao, Yu</creator><creator>Wang, Xinghuan</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1377-9685</orcidid><orcidid>https://orcid.org/0000-0003-3497-0024</orcidid></search><sort><creationdate>202002</creationdate><title>An outcome model for human bladder cancer: A comprehensive study based on weighted gene co‐expression network analysis</title><author>Xiong, Yaoyi ; Yuan, Lushun ; Xiong, Jing ; Xu, Huimin ; Luo, Yongwen ; Wang, Gang ; Ju, Lingao ; Xiao, Yu ; Wang, Xinghuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-7f97935fd4727cf1bc563405bfecc2d224770d2fb08c6d3a12efa080c7ad87143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Bladder cancer</topic><topic>Cancer</topic><topic>Computational Biology - methods</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Disease Progression</topic><topic>Gene expression</topic><topic>Gene Expression Omnibus (GEO)</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Humans</topic><topic>LASSO</topic><topic>Medical prognosis</topic><topic>Multivariate Analysis</topic><topic>Nomograms</topic><topic>Original</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Prognosis</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Researchers</topic><topic>Software</topic><topic>Survival analysis</topic><topic>Urinary Bladder Neoplasms - genetics</topic><topic>Urinary Bladder Neoplasms - pathology</topic><topic>WGCNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yaoyi</creatorcontrib><creatorcontrib>Yuan, Lushun</creatorcontrib><creatorcontrib>Xiong, Jing</creatorcontrib><creatorcontrib>Xu, Huimin</creatorcontrib><creatorcontrib>Luo, Yongwen</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Ju, Lingao</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Wang, Xinghuan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yaoyi</au><au>Yuan, Lushun</au><au>Xiong, Jing</au><au>Xu, Huimin</au><au>Luo, Yongwen</au><au>Wang, Gang</au><au>Ju, Lingao</au><au>Xiao, Yu</au><au>Wang, Xinghuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An outcome model for human bladder cancer: A comprehensive study based on weighted gene co‐expression network analysis</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-02</date><risdate>2020</risdate><volume>24</volume><issue>3</issue><spage>2342</spage><epage>2355</epage><pages>2342-2355</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31883309</pmid><doi>10.1111/jcmm.14918</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1377-9685</orcidid><orcidid>https://orcid.org/0000-0003-3497-0024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2020-02, Vol.24 (3), p.2342-2355 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011142 |
source | MEDLINE; Wiley Online Library; DOAJ Directory of Open Access Journals; PubMed (Medline); Wiley Online Library Open Access; Free E-Journal (出版社公開部分のみ) |
subjects | Accuracy Bioinformatics Biomarkers Bladder cancer Cancer Computational Biology - methods Datasets Decision making Disease Progression Gene expression Gene Expression Omnibus (GEO) Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic - genetics Humans LASSO Medical prognosis Multivariate Analysis Nomograms Original Patients Performance evaluation Prognosis Proportional Hazards Models Regression Analysis Researchers Software Survival analysis Urinary Bladder Neoplasms - genetics Urinary Bladder Neoplasms - pathology WGCNA |
title | An outcome model for human bladder cancer: A comprehensive study based on weighted gene co‐expression network analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20outcome%20model%20for%20human%20bladder%20cancer:%20A%20comprehensive%20study%20based%20on%20weighted%20gene%20co%E2%80%90expression%20network%20analysis&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Xiong,%20Yaoyi&rft.date=2020-02&rft.volume=24&rft.issue=3&rft.spage=2342&rft.epage=2355&rft.pages=2342-2355&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.14918&rft_dat=%3Cproquest_pubme%3E2331249581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352923703&rft_id=info:pmid/31883309&rfr_iscdi=true |