The keratin–desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis
Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin en...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2020-02, Vol.77 (3), p.543-558 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 3 |
container_start_page | 543 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 77 |
creator | Moch, Marcin Schwarz, Nicole Windoffer, Reinhard Leube, Rudolf E. |
description | Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity. |
doi_str_mv | 10.1007/s00018-019-03198-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7010626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2247258920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-3ebd3df083e9b51e7314ae1f6c7164fbeb90b3c57cfafed630c1e81ece02d0ca3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EoqXwAiyQJTZsAufYie2wQEIVN6kSmyKxwnKc45m0STzYmaLZ9R36hjwJGWY6XBawsqXz_b8vH2OPEZ4jgH6RAQBNAVgXILE2xeYOO8ZSQFGDxrv7vTLi8xF7kPPFTFdGqPvsSKIoZVnDMftyviR-SclN3fj9-qalPMQcB-LZuxBi377kq-4qTq7nKfbEY-AHJvMQ022YjzR9i-mSDzGtlnFBI-UuP2T3guszPdqvJ-zT2zfnp--Ls4_vPpy-Pit8BXoqJDWtbAMYSXVTIWmJpSMMymtUZWioqaGRvtI-uECtkuCRDJInEC14J0_Yq13vat0M1Hoap-R6u0rd4NLGRtfZPydjt7SLeGU1ICih5oJn-4IUv64pT3bosqe-dyPFdbaiEqVApRT8HxWlkdpUQs7o07_Qi7hO4_wTW0qLytRiWyh2lE8x50ThcG8EuzVtd6btbNr-NG03c-jJ7y8-RG7VzoDcAXkejQtKv87-R-0PHJS4jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247258920</pqid></control><display><type>article</type><title>The keratin–desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis</title><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>SpringerLink_现刊</source><creator>Moch, Marcin ; Schwarz, Nicole ; Windoffer, Reinhard ; Leube, Rudolf E.</creator><creatorcontrib>Moch, Marcin ; Schwarz, Nicole ; Windoffer, Reinhard ; Leube, Rudolf E.</creatorcontrib><description>Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-019-03198-y</identifier><identifier>PMID: 31243490</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Adhesion - physiology ; Cell Biology ; Cell Line ; Clustering ; Cytoplasm - metabolism ; Cytoskeletal Proteins - metabolism ; Cytoskeleton ; Cytoskeleton - metabolism ; Desmosomes ; Desmosomes - metabolism ; Elongation ; Embryos ; epithelium ; Filaments ; Fluorescence ; Humans ; Intermediate filaments ; Intermediate Filaments - metabolism ; Keratin ; keratinocytes ; Keratinocytes - metabolism ; Keratins - metabolism ; Life Sciences ; Mice ; Morphogenesis ; Morphogenesis - physiology ; Nucleation ; Original ; Original Article ; Proteins ; Spokes</subject><ispartof>Cellular and molecular life sciences : CMLS, 2020-02, Vol.77 (3), p.543-558</ispartof><rights>The Author(s) 2019</rights><rights>Cellular and Molecular Life Sciences is a copyright of Springer, (2019). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-3ebd3df083e9b51e7314ae1f6c7164fbeb90b3c57cfafed630c1e81ece02d0ca3</citedby><cites>FETCH-LOGICAL-c507t-3ebd3df083e9b51e7314ae1f6c7164fbeb90b3c57cfafed630c1e81ece02d0ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,41486,42555,51317,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31243490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moch, Marcin</creatorcontrib><creatorcontrib>Schwarz, Nicole</creatorcontrib><creatorcontrib>Windoffer, Reinhard</creatorcontrib><creatorcontrib>Leube, Rudolf E.</creatorcontrib><title>The keratin–desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Clustering</subject><subject>Cytoplasm - metabolism</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Desmosomes</subject><subject>Desmosomes - metabolism</subject><subject>Elongation</subject><subject>Embryos</subject><subject>epithelium</subject><subject>Filaments</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Intermediate filaments</subject><subject>Intermediate Filaments - metabolism</subject><subject>Keratin</subject><subject>keratinocytes</subject><subject>Keratinocytes - metabolism</subject><subject>Keratins - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Morphogenesis</subject><subject>Morphogenesis - physiology</subject><subject>Nucleation</subject><subject>Original</subject><subject>Original Article</subject><subject>Proteins</subject><subject>Spokes</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctu1DAUhi0EoqXwAiyQJTZsAufYie2wQEIVN6kSmyKxwnKc45m0STzYmaLZ9R36hjwJGWY6XBawsqXz_b8vH2OPEZ4jgH6RAQBNAVgXILE2xeYOO8ZSQFGDxrv7vTLi8xF7kPPFTFdGqPvsSKIoZVnDMftyviR-SclN3fj9-qalPMQcB-LZuxBi377kq-4qTq7nKfbEY-AHJvMQ022YjzR9i-mSDzGtlnFBI-UuP2T3guszPdqvJ-zT2zfnp--Ls4_vPpy-Pit8BXoqJDWtbAMYSXVTIWmJpSMMymtUZWioqaGRvtI-uECtkuCRDJInEC14J0_Yq13vat0M1Hoap-R6u0rd4NLGRtfZPydjt7SLeGU1ICih5oJn-4IUv64pT3bosqe-dyPFdbaiEqVApRT8HxWlkdpUQs7o07_Qi7hO4_wTW0qLytRiWyh2lE8x50ThcG8EuzVtd6btbNr-NG03c-jJ7y8-RG7VzoDcAXkejQtKv87-R-0PHJS4jQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Moch, Marcin</creator><creator>Schwarz, Nicole</creator><creator>Windoffer, Reinhard</creator><creator>Leube, Rudolf E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>The keratin–desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis</title><author>Moch, Marcin ; Schwarz, Nicole ; Windoffer, Reinhard ; Leube, Rudolf E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-3ebd3df083e9b51e7314ae1f6c7164fbeb90b3c57cfafed630c1e81ece02d0ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Clustering</topic><topic>Cytoplasm - metabolism</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Desmosomes</topic><topic>Desmosomes - metabolism</topic><topic>Elongation</topic><topic>Embryos</topic><topic>epithelium</topic><topic>Filaments</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Intermediate filaments</topic><topic>Intermediate Filaments - metabolism</topic><topic>Keratin</topic><topic>keratinocytes</topic><topic>Keratinocytes - metabolism</topic><topic>Keratins - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Morphogenesis</topic><topic>Morphogenesis - physiology</topic><topic>Nucleation</topic><topic>Original</topic><topic>Original Article</topic><topic>Proteins</topic><topic>Spokes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moch, Marcin</creatorcontrib><creatorcontrib>Schwarz, Nicole</creatorcontrib><creatorcontrib>Windoffer, Reinhard</creatorcontrib><creatorcontrib>Leube, Rudolf E.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moch, Marcin</au><au>Schwarz, Nicole</au><au>Windoffer, Reinhard</au><au>Leube, Rudolf E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The keratin–desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>77</volume><issue>3</issue><spage>543</spage><epage>558</epage><pages>543-558</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31243490</pmid><doi>10.1007/s00018-019-03198-y</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2020-02, Vol.77 (3), p.543-558 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7010626 |
source | MEDLINE; NCBI_PubMed Central(免费); SpringerLink_现刊 |
subjects | Animals Biochemistry Biomedical and Life Sciences Biomedicine Cell Adhesion - physiology Cell Biology Cell Line Clustering Cytoplasm - metabolism Cytoskeletal Proteins - metabolism Cytoskeleton Cytoskeleton - metabolism Desmosomes Desmosomes - metabolism Elongation Embryos epithelium Filaments Fluorescence Humans Intermediate filaments Intermediate Filaments - metabolism Keratin keratinocytes Keratinocytes - metabolism Keratins - metabolism Life Sciences Mice Morphogenesis Morphogenesis - physiology Nucleation Original Original Article Proteins Spokes |
title | The keratin–desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20keratin%E2%80%93desmosome%20scaffold:%20pivotal%20role%20of%20desmosomes%20for%20keratin%20network%20morphogenesis&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Moch,%20Marcin&rft.date=2020-02-01&rft.volume=77&rft.issue=3&rft.spage=543&rft.epage=558&rft.pages=543-558&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-019-03198-y&rft_dat=%3Cproquest_pubme%3E2247258920%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247258920&rft_id=info:pmid/31243490&rfr_iscdi=true |