Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation

With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of antimicrobial agents 2011-04, Vol.37 (4), p.316-323
Hauptverfasser: Ammons, Mary Cloud B, Ward, Loren S, Dowd, Scot, James, Garth A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 4
container_start_page 316
container_title International journal of antimicrobial agents
container_volume 37
creator Ammons, Mary Cloud B
Ward, Loren S
Dowd, Scot
James, Garth A
description With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-forming opportunistic pathogen in chronic wounds. The innate immune molecule lactoferrin and the rare sugar alcohol xylitol have been demonstrated to be co-operatively efficacious against P. aeruginosa biofilms in vitro. Data presented here propose a model for the molecular mechanism behind this co-operative antimicrobial effect. Lactoferrin iron chelation was identified as the primary means by which lactoferrin destabilises the bacterial membrane. By microarray analysis, 183 differentially expressed genes of ≥1.5-fold difference were detected. Interestingly, differentially expressed transcripts included the operon encoding components of the pyochelin biosynthesis pathway. Furthermore, siderophore detection verified that xylitol is the component of this novel synergistic treatment that inhibits the ability of the bacteria to produce siderophores under conditions of iron restriction. The findings presented here demonstrate that whilst lactoferrin treatment of P. aeruginosa biofilms results in destabilisation of the bacterial cell membrane though iron chelation, combined treatment with lactoferrin and xylitol inhibits the ability of P. aeruginosa biofilms to respond to environmental iron restriction.
doi_str_mv 10.1016/j.ijantimicag.2010.12.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0924857911000513</els_id><sourcerecordid>858285027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-ffd3dad9b3d8b3c658c2bb2788a791ca2a90520c3e2ccd417f922e96be1a737e3</originalsourceid><addsrcrecordid>eNqNkt1uEzEQhVcIREvhFcBcILhJ8E82672phCL-pEoglV5bs97ZZMKuHWxvIY_FG-JVQmm5QFzZGn_neDw-RfFc8LngYvl6O6ctuEQDWVjPJZ_qcs5Ffa84FbqSs6oW6n5xymu5mOmyqk-KRzFuORelWpQPixMpVFXpBT8tfq780JDDlqWAkAZ0ifmOfY44tn7wDiIDDOOanI_AGvId9QP7TmnDerDJdxgCOQauZT_2PSXfM3IbaihFljbIoKFc3U-eTeYxELDkWcC481mTty0MsMapMvaJ3Jp1wQ93zCl4x-wGe0jk3ePiQQd9xCfH9ay4evf2y-rD7OLT-4-rNxczu5SLNOu6VrXQ1o1qdaPsstRWNo2stIY8HQsSal5KbhVKa9uFqLpaSqyXDQqoVIXqrDg_-O7GZsDW5skE6M0u0ABhbzyQuXviaGPW_tpUnGvOq2zw8mgQ_LcRYzIDRYt9Dw79GI0utdQllxP56p-kWNaLknO-rDNaH1AbfIwBu5uGBDdTOMzW3AqHmcJhhDQ5HFn79PaLbpS_05CBF0cAooW-C-AsxT-cqrXipc7cswPXgTewDpm5usw35R6FlqqSmVgdCMw_dE0YTLSEzmJLAW0yraf_avj8Lxfbk8tY_xX3GLd-DC5HwAgTs8BcTnmf4i5EHlYplPoFHgMC9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694500069</pqid></control><display><type>article</type><title>Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ammons, Mary Cloud B ; Ward, Loren S ; Dowd, Scot ; James, Garth A</creator><creatorcontrib>Ammons, Mary Cloud B ; Ward, Loren S ; Dowd, Scot ; James, Garth A</creatorcontrib><description>With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-forming opportunistic pathogen in chronic wounds. The innate immune molecule lactoferrin and the rare sugar alcohol xylitol have been demonstrated to be co-operatively efficacious against P. aeruginosa biofilms in vitro. Data presented here propose a model for the molecular mechanism behind this co-operative antimicrobial effect. Lactoferrin iron chelation was identified as the primary means by which lactoferrin destabilises the bacterial membrane. By microarray analysis, 183 differentially expressed genes of ≥1.5-fold difference were detected. Interestingly, differentially expressed transcripts included the operon encoding components of the pyochelin biosynthesis pathway. Furthermore, siderophore detection verified that xylitol is the component of this novel synergistic treatment that inhibits the ability of the bacteria to produce siderophores under conditions of iron restriction. The findings presented here demonstrate that whilst lactoferrin treatment of P. aeruginosa biofilms results in destabilisation of the bacterial cell membrane though iron chelation, combined treatment with lactoferrin and xylitol inhibits the ability of P. aeruginosa biofilms to respond to environmental iron restriction.</description><identifier>ISSN: 0924-8579</identifier><identifier>EISSN: 1872-7913</identifier><identifier>DOI: 10.1016/j.ijantimicag.2010.12.019</identifier><identifier>PMID: 21377840</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>anti-infective agents ; anti-infective properties ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; bacteria ; Base Sequence ; Biofilm ; Biofilms ; Biological and medical sciences ; biosynthesis ; cell membranes ; chelation ; DNA Primers ; gene expression ; gene expression regulation ; Gene Expression Regulation, Bacterial ; Infectious Disease ; Iron Chelating Agents - pharmacology ; Lactoferrin ; Lactoferrin - pharmacology ; Medical sciences ; microarray technology ; Microscopy, Fluorescence ; Oligonucleotide Array Sequence Analysis ; operon ; pathogens ; Pharmacology. Drug treatments ; Polymerase Chain Reaction ; pressure ulcers ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - drug effects ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - physiology ; siderophores ; Xylitol ; Xylitol - pharmacology</subject><ispartof>International journal of antimicrobial agents, 2011-04, Vol.37 (4), p.316-323</ispartof><rights>Elsevier B.V. and the International Society of Chemotherapy</rights><rights>2011 Elsevier B.V. and the International Society of Chemotherapy</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-ffd3dad9b3d8b3c658c2bb2788a791ca2a90520c3e2ccd417f922e96be1a737e3</citedby><cites>FETCH-LOGICAL-c624t-ffd3dad9b3d8b3c658c2bb2788a791ca2a90520c3e2ccd417f922e96be1a737e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924857911000513$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23983058$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21377840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ammons, Mary Cloud B</creatorcontrib><creatorcontrib>Ward, Loren S</creatorcontrib><creatorcontrib>Dowd, Scot</creatorcontrib><creatorcontrib>James, Garth A</creatorcontrib><title>Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation</title><title>International journal of antimicrobial agents</title><addtitle>Int J Antimicrob Agents</addtitle><description>With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-forming opportunistic pathogen in chronic wounds. The innate immune molecule lactoferrin and the rare sugar alcohol xylitol have been demonstrated to be co-operatively efficacious against P. aeruginosa biofilms in vitro. Data presented here propose a model for the molecular mechanism behind this co-operative antimicrobial effect. Lactoferrin iron chelation was identified as the primary means by which lactoferrin destabilises the bacterial membrane. By microarray analysis, 183 differentially expressed genes of ≥1.5-fold difference were detected. Interestingly, differentially expressed transcripts included the operon encoding components of the pyochelin biosynthesis pathway. Furthermore, siderophore detection verified that xylitol is the component of this novel synergistic treatment that inhibits the ability of the bacteria to produce siderophores under conditions of iron restriction. The findings presented here demonstrate that whilst lactoferrin treatment of P. aeruginosa biofilms results in destabilisation of the bacterial cell membrane though iron chelation, combined treatment with lactoferrin and xylitol inhibits the ability of P. aeruginosa biofilms to respond to environmental iron restriction.</description><subject>anti-infective agents</subject><subject>anti-infective properties</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>bacteria</subject><subject>Base Sequence</subject><subject>Biofilm</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>biosynthesis</subject><subject>cell membranes</subject><subject>chelation</subject><subject>DNA Primers</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Infectious Disease</subject><subject>Iron Chelating Agents - pharmacology</subject><subject>Lactoferrin</subject><subject>Lactoferrin - pharmacology</subject><subject>Medical sciences</subject><subject>microarray technology</subject><subject>Microscopy, Fluorescence</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>operon</subject><subject>pathogens</subject><subject>Pharmacology. Drug treatments</subject><subject>Polymerase Chain Reaction</subject><subject>pressure ulcers</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - drug effects</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>siderophores</subject><subject>Xylitol</subject><subject>Xylitol - pharmacology</subject><issn>0924-8579</issn><issn>1872-7913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkt1uEzEQhVcIREvhFcBcILhJ8E82672phCL-pEoglV5bs97ZZMKuHWxvIY_FG-JVQmm5QFzZGn_neDw-RfFc8LngYvl6O6ctuEQDWVjPJZ_qcs5Ffa84FbqSs6oW6n5xymu5mOmyqk-KRzFuORelWpQPixMpVFXpBT8tfq780JDDlqWAkAZ0ifmOfY44tn7wDiIDDOOanI_AGvId9QP7TmnDerDJdxgCOQauZT_2PSXfM3IbaihFljbIoKFc3U-eTeYxELDkWcC481mTty0MsMapMvaJ3Jp1wQ93zCl4x-wGe0jk3ePiQQd9xCfH9ay4evf2y-rD7OLT-4-rNxczu5SLNOu6VrXQ1o1qdaPsstRWNo2stIY8HQsSal5KbhVKa9uFqLpaSqyXDQqoVIXqrDg_-O7GZsDW5skE6M0u0ABhbzyQuXviaGPW_tpUnGvOq2zw8mgQ_LcRYzIDRYt9Dw79GI0utdQllxP56p-kWNaLknO-rDNaH1AbfIwBu5uGBDdTOMzW3AqHmcJhhDQ5HFn79PaLbpS_05CBF0cAooW-C-AsxT-cqrXipc7cswPXgTewDpm5usw35R6FlqqSmVgdCMw_dE0YTLSEzmJLAW0yraf_avj8Lxfbk8tY_xX3GLd-DC5HwAgTs8BcTnmf4i5EHlYplPoFHgMC9A</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Ammons, Mary Cloud B</creator><creator>Ward, Loren S</creator><creator>Dowd, Scot</creator><creator>James, Garth A</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation</title><author>Ammons, Mary Cloud B ; Ward, Loren S ; Dowd, Scot ; James, Garth A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-ffd3dad9b3d8b3c658c2bb2788a791ca2a90520c3e2ccd417f922e96be1a737e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>anti-infective agents</topic><topic>anti-infective properties</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>bacteria</topic><topic>Base Sequence</topic><topic>Biofilm</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>biosynthesis</topic><topic>cell membranes</topic><topic>chelation</topic><topic>DNA Primers</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Infectious Disease</topic><topic>Iron Chelating Agents - pharmacology</topic><topic>Lactoferrin</topic><topic>Lactoferrin - pharmacology</topic><topic>Medical sciences</topic><topic>microarray technology</topic><topic>Microscopy, Fluorescence</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>operon</topic><topic>pathogens</topic><topic>Pharmacology. Drug treatments</topic><topic>Polymerase Chain Reaction</topic><topic>pressure ulcers</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - drug effects</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>siderophores</topic><topic>Xylitol</topic><topic>Xylitol - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammons, Mary Cloud B</creatorcontrib><creatorcontrib>Ward, Loren S</creatorcontrib><creatorcontrib>Dowd, Scot</creatorcontrib><creatorcontrib>James, Garth A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of antimicrobial agents</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammons, Mary Cloud B</au><au>Ward, Loren S</au><au>Dowd, Scot</au><au>James, Garth A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation</atitle><jtitle>International journal of antimicrobial agents</jtitle><addtitle>Int J Antimicrob Agents</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>37</volume><issue>4</issue><spage>316</spage><epage>323</epage><pages>316-323</pages><issn>0924-8579</issn><eissn>1872-7913</eissn><abstract>With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-forming opportunistic pathogen in chronic wounds. The innate immune molecule lactoferrin and the rare sugar alcohol xylitol have been demonstrated to be co-operatively efficacious against P. aeruginosa biofilms in vitro. Data presented here propose a model for the molecular mechanism behind this co-operative antimicrobial effect. Lactoferrin iron chelation was identified as the primary means by which lactoferrin destabilises the bacterial membrane. By microarray analysis, 183 differentially expressed genes of ≥1.5-fold difference were detected. Interestingly, differentially expressed transcripts included the operon encoding components of the pyochelin biosynthesis pathway. Furthermore, siderophore detection verified that xylitol is the component of this novel synergistic treatment that inhibits the ability of the bacteria to produce siderophores under conditions of iron restriction. The findings presented here demonstrate that whilst lactoferrin treatment of P. aeruginosa biofilms results in destabilisation of the bacterial cell membrane though iron chelation, combined treatment with lactoferrin and xylitol inhibits the ability of P. aeruginosa biofilms to respond to environmental iron restriction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21377840</pmid><doi>10.1016/j.ijantimicag.2010.12.019</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-8579
ispartof International journal of antimicrobial agents, 2011-04, Vol.37 (4), p.316-323
issn 0924-8579
1872-7913
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008007
source MEDLINE; Elsevier ScienceDirect Journals
subjects anti-infective agents
anti-infective properties
Antibiotics. Antiinfectious agents. Antiparasitic agents
bacteria
Base Sequence
Biofilm
Biofilms
Biological and medical sciences
biosynthesis
cell membranes
chelation
DNA Primers
gene expression
gene expression regulation
Gene Expression Regulation, Bacterial
Infectious Disease
Iron Chelating Agents - pharmacology
Lactoferrin
Lactoferrin - pharmacology
Medical sciences
microarray technology
Microscopy, Fluorescence
Oligonucleotide Array Sequence Analysis
operon
pathogens
Pharmacology. Drug treatments
Polymerase Chain Reaction
pressure ulcers
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - physiology
siderophores
Xylitol
Xylitol - pharmacology
title Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20treatment%20of%20Pseudomonas%20aeruginosa%20biofilm%20with%20lactoferrin%20and%20xylitol%20inhibits%20the%20ability%20of%20bacteria%20to%20respond%20to%20damage%20resulting%20from%20lactoferrin%20iron%20chelation&rft.jtitle=International%20journal%20of%20antimicrobial%20agents&rft.au=Ammons,%20Mary%20Cloud%20B&rft.date=2011-04-01&rft.volume=37&rft.issue=4&rft.spage=316&rft.epage=323&rft.pages=316-323&rft.issn=0924-8579&rft.eissn=1872-7913&rft_id=info:doi/10.1016/j.ijantimicag.2010.12.019&rft_dat=%3Cproquest_pubme%3E858285027%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694500069&rft_id=info:pmid/21377840&rft_els_id=1_s2_0_S0924857911000513&rfr_iscdi=true