The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles
Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2020-02, Vol.22 (2), p.187-199 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | Nature cell biology |
container_volume | 22 |
creator | Leidal, Andrew M. Huang, Hector H. Marsh, Timothy Solvik, Tina Zhang, Dachuan Ye, Jordan Kai, FuiBoon Goldsmith, Juliet Liu, Jennifer Y. Huang, Yu-Hsin Monkkonen, Teresa Vlahakis, Ariadne Huang, Eric J. Goodarzi, Hani Yu, Li Wiita, Arun P. Debnath, Jayanta |
description | Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Leidal et al. show that the LC3-conjugation pathway, which is part of the autophagy machinery, controls extracellular vesicle cargo loading and secretion of RNA-binding proteins. |
doi_str_mv | 10.1038/s41556-019-0450-y |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613408736</galeid><sourcerecordid>A613408736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-3c9ab4fdc8b428ba0d98051666f19112279cd462ff2a00e7874590f04fcdd663</originalsourceid><addsrcrecordid>eNp1kstuEzEUhkcIREvhAdigkdjQhYvvHm-QoohCpQikkr3l8dgTRxM72DMVeXs8pJQGgbzw7Tu_zuWvqtcIXiFImveZIsY4gEgCSBkEhyfVOaKCA8qFfDqfOQOCSHxWvch5CyGiFIrn1RlBkmBBmvOqX29svVoSYGLYTr0efQz1TpuNDzYd6ry3xjtvcz0Wboi686Gvo6tvvyxA68Ov6z7F0fqQax_GWNsfY9LGDsM06FTf2ezNYPPL6pnTQ7av7veLan39cb38DFZfP90sFytgmEAjIEbqlrrONC3FTathJxvIEOfcIYkQxkKajnLsHNYQWtEIyiR0kDrTdZyTi-rDUXY_tTvbGRtKMoPaJ7_T6aCi9ur0J_iN6uOdEhAWMVYE3t0LpPh9snlUO5_nanSwccoKE9LABjVMFvTtX-g2TimU6grFcJkIJ4-oXg9W-eDi3J5ZVC04IhQ2gsx5X_2DKquzO19GY50v7ycBlycBhRlL53s95axuvt2esujImhRzTtY99ANBNRtJHY2kipHUbCR1KDFvHjfyIeK3cwqAj0AuX6G36U_1_1f9CQi70sI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352045639</pqid></control><display><type>article</type><title>The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Leidal, Andrew M. ; Huang, Hector H. ; Marsh, Timothy ; Solvik, Tina ; Zhang, Dachuan ; Ye, Jordan ; Kai, FuiBoon ; Goldsmith, Juliet ; Liu, Jennifer Y. ; Huang, Yu-Hsin ; Monkkonen, Teresa ; Vlahakis, Ariadne ; Huang, Eric J. ; Goodarzi, Hani ; Yu, Li ; Wiita, Arun P. ; Debnath, Jayanta</creator><creatorcontrib>Leidal, Andrew M. ; Huang, Hector H. ; Marsh, Timothy ; Solvik, Tina ; Zhang, Dachuan ; Ye, Jordan ; Kai, FuiBoon ; Goldsmith, Juliet ; Liu, Jennifer Y. ; Huang, Yu-Hsin ; Monkkonen, Teresa ; Vlahakis, Ariadne ; Huang, Eric J. ; Goodarzi, Hani ; Yu, Li ; Wiita, Arun P. ; Debnath, Jayanta</creatorcontrib><description>Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Leidal et al. show that the LC3-conjugation pathway, which is part of the autophagy machinery, controls extracellular vesicle cargo loading and secretion of RNA-binding proteins.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-019-0450-y</identifier><identifier>PMID: 31932738</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/44 ; 14/28 ; 14/35 ; 631/80/313/1481 ; 631/80/39 ; 64/60 ; 82 ; 82/58 ; Adaptor Proteins, Vesicular Transport - deficiency ; Adaptor Proteins, Vesicular Transport - genetics ; Animals ; Autophagosomes - chemistry ; Autophagosomes - metabolism ; Autophagy ; Autophagy - genetics ; Autophagy-Related Protein 7 - deficiency ; Autophagy-Related Protein 7 - genetics ; Autophagy-Related Proteins - deficiency ; Autophagy-Related Proteins - genetics ; Binding ; Binding proteins ; Biological Transport ; Biomedical and Life Sciences ; Biotinylation ; Cancer Research ; Cell Biology ; Conjugation ; Developmental Biology ; Extracellular vesicles ; Extracellular Vesicles - chemistry ; Extracellular Vesicles - metabolism ; Gene Expression Profiling ; Gene Expression Regulation ; HEK293 Cells ; Heterogeneous-Nuclear Ribonucleoprotein K - genetics ; Heterogeneous-Nuclear Ribonucleoprotein K - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Life Sciences ; Lysosomes - chemistry ; Lysosomes - metabolism ; Matrix Attachment Region Binding Proteins - genetics ; Matrix Attachment Region Binding Proteins - metabolism ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Non-coding RNA ; Nuclear Matrix-Associated Proteins - genetics ; Nuclear Matrix-Associated Proteins - metabolism ; Phagocytosis ; Protein binding ; Proteins ; Proteomics ; Proteomics - methods ; RAW 264.7 Cells ; Receptors, Estrogen - genetics ; Receptors, Estrogen - metabolism ; Ribonucleic acid ; Ribonucleoprotein K ; RNA ; RNA, Small Untranslated - genetics ; RNA, Small Untranslated - metabolism ; RNA-binding protein ; RNA-Binding Proteins - classification ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Secretion ; Secretome ; Sphingomyelin phosphodiesterase ; Sphingomyelin Phosphodiesterase - genetics ; Sphingomyelin Phosphodiesterase - metabolism ; Stem Cells ; Target recognition ; Vesicles</subject><ispartof>Nature cell biology, 2020-02, Vol.22 (2), p.187-199</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-3c9ab4fdc8b428ba0d98051666f19112279cd462ff2a00e7874590f04fcdd663</citedby><cites>FETCH-LOGICAL-c571t-3c9ab4fdc8b428ba0d98051666f19112279cd462ff2a00e7874590f04fcdd663</cites><orcidid>0000-0002-8772-7645 ; 0000-0002-5381-3801 ; 0000-0002-9648-8949 ; 0000-0002-7465-6964 ; 0000-0003-0908-9008 ; 0000-0002-8745-4069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-019-0450-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-019-0450-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leidal, Andrew M.</creatorcontrib><creatorcontrib>Huang, Hector H.</creatorcontrib><creatorcontrib>Marsh, Timothy</creatorcontrib><creatorcontrib>Solvik, Tina</creatorcontrib><creatorcontrib>Zhang, Dachuan</creatorcontrib><creatorcontrib>Ye, Jordan</creatorcontrib><creatorcontrib>Kai, FuiBoon</creatorcontrib><creatorcontrib>Goldsmith, Juliet</creatorcontrib><creatorcontrib>Liu, Jennifer Y.</creatorcontrib><creatorcontrib>Huang, Yu-Hsin</creatorcontrib><creatorcontrib>Monkkonen, Teresa</creatorcontrib><creatorcontrib>Vlahakis, Ariadne</creatorcontrib><creatorcontrib>Huang, Eric J.</creatorcontrib><creatorcontrib>Goodarzi, Hani</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Wiita, Arun P.</creatorcontrib><creatorcontrib>Debnath, Jayanta</creatorcontrib><title>The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Leidal et al. show that the LC3-conjugation pathway, which is part of the autophagy machinery, controls extracellular vesicle cargo loading and secretion of RNA-binding proteins.</description><subject>13/106</subject><subject>13/44</subject><subject>14/28</subject><subject>14/35</subject><subject>631/80/313/1481</subject><subject>631/80/39</subject><subject>64/60</subject><subject>82</subject><subject>82/58</subject><subject>Adaptor Proteins, Vesicular Transport - deficiency</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Animals</subject><subject>Autophagosomes - chemistry</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Autophagy-Related Protein 7 - deficiency</subject><subject>Autophagy-Related Protein 7 - genetics</subject><subject>Autophagy-Related Proteins - deficiency</subject><subject>Autophagy-Related Proteins - genetics</subject><subject>Binding</subject><subject>Binding proteins</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>Biotinylation</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Conjugation</subject><subject>Developmental Biology</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - chemistry</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>HEK293 Cells</subject><subject>Heterogeneous-Nuclear Ribonucleoprotein K - genetics</subject><subject>Heterogeneous-Nuclear Ribonucleoprotein K - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Lysosomes - chemistry</subject><subject>Lysosomes - metabolism</subject><subject>Matrix Attachment Region Binding Proteins - genetics</subject><subject>Matrix Attachment Region Binding Proteins - metabolism</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Non-coding RNA</subject><subject>Nuclear Matrix-Associated Proteins - genetics</subject><subject>Nuclear Matrix-Associated Proteins - metabolism</subject><subject>Phagocytosis</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>RAW 264.7 Cells</subject><subject>Receptors, Estrogen - genetics</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoprotein K</subject><subject>RNA</subject><subject>RNA, Small Untranslated - genetics</subject><subject>RNA, Small Untranslated - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - classification</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Secretion</subject><subject>Secretome</subject><subject>Sphingomyelin phosphodiesterase</subject><subject>Sphingomyelin Phosphodiesterase - genetics</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><subject>Stem Cells</subject><subject>Target recognition</subject><subject>Vesicles</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kstuEzEUhkcIREvhAdigkdjQhYvvHm-QoohCpQikkr3l8dgTRxM72DMVeXs8pJQGgbzw7Tu_zuWvqtcIXiFImveZIsY4gEgCSBkEhyfVOaKCA8qFfDqfOQOCSHxWvch5CyGiFIrn1RlBkmBBmvOqX29svVoSYGLYTr0efQz1TpuNDzYd6ry3xjtvcz0Wboi686Gvo6tvvyxA68Ov6z7F0fqQax_GWNsfY9LGDsM06FTf2ezNYPPL6pnTQ7av7veLan39cb38DFZfP90sFytgmEAjIEbqlrrONC3FTathJxvIEOfcIYkQxkKajnLsHNYQWtEIyiR0kDrTdZyTi-rDUXY_tTvbGRtKMoPaJ7_T6aCi9ur0J_iN6uOdEhAWMVYE3t0LpPh9snlUO5_nanSwccoKE9LABjVMFvTtX-g2TimU6grFcJkIJ4-oXg9W-eDi3J5ZVC04IhQ2gsx5X_2DKquzO19GY50v7ycBlycBhRlL53s95axuvt2esujImhRzTtY99ANBNRtJHY2kipHUbCR1KDFvHjfyIeK3cwqAj0AuX6G36U_1_1f9CQi70sI</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Leidal, Andrew M.</creator><creator>Huang, Hector H.</creator><creator>Marsh, Timothy</creator><creator>Solvik, Tina</creator><creator>Zhang, Dachuan</creator><creator>Ye, Jordan</creator><creator>Kai, FuiBoon</creator><creator>Goldsmith, Juliet</creator><creator>Liu, Jennifer Y.</creator><creator>Huang, Yu-Hsin</creator><creator>Monkkonen, Teresa</creator><creator>Vlahakis, Ariadne</creator><creator>Huang, Eric J.</creator><creator>Goodarzi, Hani</creator><creator>Yu, Li</creator><creator>Wiita, Arun P.</creator><creator>Debnath, Jayanta</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8772-7645</orcidid><orcidid>https://orcid.org/0000-0002-5381-3801</orcidid><orcidid>https://orcid.org/0000-0002-9648-8949</orcidid><orcidid>https://orcid.org/0000-0002-7465-6964</orcidid><orcidid>https://orcid.org/0000-0003-0908-9008</orcidid><orcidid>https://orcid.org/0000-0002-8745-4069</orcidid></search><sort><creationdate>20200201</creationdate><title>The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles</title><author>Leidal, Andrew M. ; Huang, Hector H. ; Marsh, Timothy ; Solvik, Tina ; Zhang, Dachuan ; Ye, Jordan ; Kai, FuiBoon ; Goldsmith, Juliet ; Liu, Jennifer Y. ; Huang, Yu-Hsin ; Monkkonen, Teresa ; Vlahakis, Ariadne ; Huang, Eric J. ; Goodarzi, Hani ; Yu, Li ; Wiita, Arun P. ; Debnath, Jayanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-3c9ab4fdc8b428ba0d98051666f19112279cd462ff2a00e7874590f04fcdd663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/106</topic><topic>13/44</topic><topic>14/28</topic><topic>14/35</topic><topic>631/80/313/1481</topic><topic>631/80/39</topic><topic>64/60</topic><topic>82</topic><topic>82/58</topic><topic>Adaptor Proteins, Vesicular Transport - deficiency</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Animals</topic><topic>Autophagosomes - chemistry</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Autophagy-Related Protein 7 - deficiency</topic><topic>Autophagy-Related Protein 7 - genetics</topic><topic>Autophagy-Related Proteins - deficiency</topic><topic>Autophagy-Related Proteins - genetics</topic><topic>Binding</topic><topic>Binding proteins</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>Biotinylation</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Conjugation</topic><topic>Developmental Biology</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - chemistry</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>HEK293 Cells</topic><topic>Heterogeneous-Nuclear Ribonucleoprotein K - genetics</topic><topic>Heterogeneous-Nuclear Ribonucleoprotein K - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Lysosomes - chemistry</topic><topic>Lysosomes - metabolism</topic><topic>Matrix Attachment Region Binding Proteins - genetics</topic><topic>Matrix Attachment Region Binding Proteins - metabolism</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Non-coding RNA</topic><topic>Nuclear Matrix-Associated Proteins - genetics</topic><topic>Nuclear Matrix-Associated Proteins - metabolism</topic><topic>Phagocytosis</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>RAW 264.7 Cells</topic><topic>Receptors, Estrogen - genetics</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoprotein K</topic><topic>RNA</topic><topic>RNA, Small Untranslated - genetics</topic><topic>RNA, Small Untranslated - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - classification</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Secretion</topic><topic>Secretome</topic><topic>Sphingomyelin phosphodiesterase</topic><topic>Sphingomyelin Phosphodiesterase - genetics</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><topic>Stem Cells</topic><topic>Target recognition</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leidal, Andrew M.</creatorcontrib><creatorcontrib>Huang, Hector H.</creatorcontrib><creatorcontrib>Marsh, Timothy</creatorcontrib><creatorcontrib>Solvik, Tina</creatorcontrib><creatorcontrib>Zhang, Dachuan</creatorcontrib><creatorcontrib>Ye, Jordan</creatorcontrib><creatorcontrib>Kai, FuiBoon</creatorcontrib><creatorcontrib>Goldsmith, Juliet</creatorcontrib><creatorcontrib>Liu, Jennifer Y.</creatorcontrib><creatorcontrib>Huang, Yu-Hsin</creatorcontrib><creatorcontrib>Monkkonen, Teresa</creatorcontrib><creatorcontrib>Vlahakis, Ariadne</creatorcontrib><creatorcontrib>Huang, Eric J.</creatorcontrib><creatorcontrib>Goodarzi, Hani</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Wiita, Arun P.</creatorcontrib><creatorcontrib>Debnath, Jayanta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leidal, Andrew M.</au><au>Huang, Hector H.</au><au>Marsh, Timothy</au><au>Solvik, Tina</au><au>Zhang, Dachuan</au><au>Ye, Jordan</au><au>Kai, FuiBoon</au><au>Goldsmith, Juliet</au><au>Liu, Jennifer Y.</au><au>Huang, Yu-Hsin</au><au>Monkkonen, Teresa</au><au>Vlahakis, Ariadne</au><au>Huang, Eric J.</au><au>Goodarzi, Hani</au><au>Yu, Li</au><au>Wiita, Arun P.</au><au>Debnath, Jayanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>187</spage><epage>199</epage><pages>187-199</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Leidal et al. show that the LC3-conjugation pathway, which is part of the autophagy machinery, controls extracellular vesicle cargo loading and secretion of RNA-binding proteins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31932738</pmid><doi>10.1038/s41556-019-0450-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8772-7645</orcidid><orcidid>https://orcid.org/0000-0002-5381-3801</orcidid><orcidid>https://orcid.org/0000-0002-9648-8949</orcidid><orcidid>https://orcid.org/0000-0002-7465-6964</orcidid><orcidid>https://orcid.org/0000-0003-0908-9008</orcidid><orcidid>https://orcid.org/0000-0002-8745-4069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2020-02, Vol.22 (2), p.187-199 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007875 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/106 13/44 14/28 14/35 631/80/313/1481 631/80/39 64/60 82 82/58 Adaptor Proteins, Vesicular Transport - deficiency Adaptor Proteins, Vesicular Transport - genetics Animals Autophagosomes - chemistry Autophagosomes - metabolism Autophagy Autophagy - genetics Autophagy-Related Protein 7 - deficiency Autophagy-Related Protein 7 - genetics Autophagy-Related Proteins - deficiency Autophagy-Related Proteins - genetics Binding Binding proteins Biological Transport Biomedical and Life Sciences Biotinylation Cancer Research Cell Biology Conjugation Developmental Biology Extracellular vesicles Extracellular Vesicles - chemistry Extracellular Vesicles - metabolism Gene Expression Profiling Gene Expression Regulation HEK293 Cells Heterogeneous-Nuclear Ribonucleoprotein K - genetics Heterogeneous-Nuclear Ribonucleoprotein K - metabolism Humans Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Life Sciences Lysosomes - chemistry Lysosomes - metabolism Matrix Attachment Region Binding Proteins - genetics Matrix Attachment Region Binding Proteins - metabolism Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Non-coding RNA Nuclear Matrix-Associated Proteins - genetics Nuclear Matrix-Associated Proteins - metabolism Phagocytosis Protein binding Proteins Proteomics Proteomics - methods RAW 264.7 Cells Receptors, Estrogen - genetics Receptors, Estrogen - metabolism Ribonucleic acid Ribonucleoprotein K RNA RNA, Small Untranslated - genetics RNA, Small Untranslated - metabolism RNA-binding protein RNA-Binding Proteins - classification RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Secretion Secretome Sphingomyelin phosphodiesterase Sphingomyelin Phosphodiesterase - genetics Sphingomyelin Phosphodiesterase - metabolism Stem Cells Target recognition Vesicles |
title | The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LC3-conjugation%20machinery%20specifies%20the%20loading%20of%20RNA-binding%20proteins%20into%20extracellular%20vesicles&rft.jtitle=Nature%20cell%20biology&rft.au=Leidal,%20Andrew%20M.&rft.date=2020-02-01&rft.volume=22&rft.issue=2&rft.spage=187&rft.epage=199&rft.pages=187-199&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-019-0450-y&rft_dat=%3Cgale_pubme%3EA613408736%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352045639&rft_id=info:pmid/31932738&rft_galeid=A613408736&rfr_iscdi=true |