Structural elements regulating the photochromicity in a cyanobacteriochrome

The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z darkadapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (5), p.2432-2440
Hauptverfasser: Xu, Xiuling, Höppner, Astrid, Wiebeler, Christian, Zhao, Kai-Hong, Schapiro, Igor, Gärtner, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2440
container_issue 5
container_start_page 2432
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Xu, Xiuling
Höppner, Astrid
Wiebeler, Christian
Zhao, Kai-Hong
Schapiro, Igor
Gärtner, Wolfgang
description The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z darkadapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to- Pg conversion as resulting from an out-of-plane rotation of the chromophore’s peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantumchemical calculations in the framework of multiscale modeling to rationalize the absorptionmaxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.
doi_str_mv 10.1073/pnas.1910208117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928841</jstor_id><sourcerecordid>26928841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-f8c414ce756677a9f9cdf3f565261ad63fa55ef6cb6916916318f0582785e11a3</originalsourceid><addsrcrecordid>eNpdkc1rVDEUxYModlpdu1IeuHHz2tx8ZyNI0VosuGhdh0wmmcnw3suY5Anz3zfD1PEDLtzF-d3DuRyE3gC-BCzp1W6y5RI0YIIVgHyGFoA19IJp_BwtMCayV4ywM3ReyhZjrLnCL9EZBS2YInKBvt3XPLs6Zzt0fvCjn2rpsl_Pg61xWnd147vdJtXkNjmN0cW67-LU2c7t7ZSW1lWf41H0r9CLYIfiXz_tC_Tjy-eH66_93feb2-tPd73jnNc-KMeAOS-5EFJaHbRbBRq44ESAXQkaLOc-CLcUGg5DQQXMW1zFPYClF-jj0Xc3L0e_ci1zi292OY42702y0fyrTHFj1umXkRhLznAz-PBkkNPP2ZdqxlicHwY7-TQXQyijHBMlSEPf_4du05yn9l6jOKMUKDtQV0fK5VRK9uEUBrA5FGUORZk_RbWLd3__cOJ_N9OAt0dgW2rKJ50ITZRiQB8BKJqZ2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354331342</pqid></control><display><type>article</type><title>Structural elements regulating the photochromicity in a cyanobacteriochrome</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Xiuling ; Höppner, Astrid ; Wiebeler, Christian ; Zhao, Kai-Hong ; Schapiro, Igor ; Gärtner, Wolfgang</creator><creatorcontrib>Xu, Xiuling ; Höppner, Astrid ; Wiebeler, Christian ; Zhao, Kai-Hong ; Schapiro, Igor ; Gärtner, Wolfgang</creatorcontrib><description>The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z darkadapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to- Pg conversion as resulting from an out-of-plane rotation of the chromophore’s peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantumchemical calculations in the framework of multiscale modeling to rationalize the absorptionmaxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910208117</identifier><identifier>PMID: 31964827</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption ; Biological Sciences ; Chromophores ; Coplanarity ; Crystal structure ; Crystals ; Dark adaptation ; Organic chemistry ; PCB compounds ; Phycocyanobilin ; PNAS Plus ; Protein structure ; Proteins ; Quantum chemistry ; Structural members</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (5), p.2432-2440</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 4, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-f8c414ce756677a9f9cdf3f565261ad63fa55ef6cb6916916318f0582785e11a3</citedby><cites>FETCH-LOGICAL-c555t-f8c414ce756677a9f9cdf3f565261ad63fa55ef6cb6916916318f0582785e11a3</cites><orcidid>0000-0003-1286-0860 ; 0000-0002-6898-7011 ; 0000-0003-1637-6187 ; 0000-0001-8536-6869 ; 0000-0002-7076-5936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928841$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928841$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31964827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiuling</creatorcontrib><creatorcontrib>Höppner, Astrid</creatorcontrib><creatorcontrib>Wiebeler, Christian</creatorcontrib><creatorcontrib>Zhao, Kai-Hong</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><title>Structural elements regulating the photochromicity in a cyanobacteriochrome</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z darkadapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to- Pg conversion as resulting from an out-of-plane rotation of the chromophore’s peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantumchemical calculations in the framework of multiscale modeling to rationalize the absorptionmaxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.</description><subject>Absorption</subject><subject>Biological Sciences</subject><subject>Chromophores</subject><subject>Coplanarity</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dark adaptation</subject><subject>Organic chemistry</subject><subject>PCB compounds</subject><subject>Phycocyanobilin</subject><subject>PNAS Plus</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Structural members</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rVDEUxYModlpdu1IeuHHz2tx8ZyNI0VosuGhdh0wmmcnw3suY5Anz3zfD1PEDLtzF-d3DuRyE3gC-BCzp1W6y5RI0YIIVgHyGFoA19IJp_BwtMCayV4ywM3ReyhZjrLnCL9EZBS2YInKBvt3XPLs6Zzt0fvCjn2rpsl_Pg61xWnd147vdJtXkNjmN0cW67-LU2c7t7ZSW1lWf41H0r9CLYIfiXz_tC_Tjy-eH66_93feb2-tPd73jnNc-KMeAOS-5EFJaHbRbBRq44ESAXQkaLOc-CLcUGg5DQQXMW1zFPYClF-jj0Xc3L0e_ci1zi292OY42702y0fyrTHFj1umXkRhLznAz-PBkkNPP2ZdqxlicHwY7-TQXQyijHBMlSEPf_4du05yn9l6jOKMUKDtQV0fK5VRK9uEUBrA5FGUORZk_RbWLd3__cOJ_N9OAt0dgW2rKJ50ITZRiQB8BKJqZ2g</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Xu, Xiuling</creator><creator>Höppner, Astrid</creator><creator>Wiebeler, Christian</creator><creator>Zhao, Kai-Hong</creator><creator>Schapiro, Igor</creator><creator>Gärtner, Wolfgang</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1286-0860</orcidid><orcidid>https://orcid.org/0000-0002-6898-7011</orcidid><orcidid>https://orcid.org/0000-0003-1637-6187</orcidid><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid><orcidid>https://orcid.org/0000-0002-7076-5936</orcidid></search><sort><creationdate>20200204</creationdate><title>Structural elements regulating the photochromicity in a cyanobacteriochrome</title><author>Xu, Xiuling ; Höppner, Astrid ; Wiebeler, Christian ; Zhao, Kai-Hong ; Schapiro, Igor ; Gärtner, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-f8c414ce756677a9f9cdf3f565261ad63fa55ef6cb6916916318f0582785e11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Biological Sciences</topic><topic>Chromophores</topic><topic>Coplanarity</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dark adaptation</topic><topic>Organic chemistry</topic><topic>PCB compounds</topic><topic>Phycocyanobilin</topic><topic>PNAS Plus</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiuling</creatorcontrib><creatorcontrib>Höppner, Astrid</creatorcontrib><creatorcontrib>Wiebeler, Christian</creatorcontrib><creatorcontrib>Zhao, Kai-Hong</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiuling</au><au>Höppner, Astrid</au><au>Wiebeler, Christian</au><au>Zhao, Kai-Hong</au><au>Schapiro, Igor</au><au>Gärtner, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural elements regulating the photochromicity in a cyanobacteriochrome</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>117</volume><issue>5</issue><spage>2432</spage><epage>2440</epage><pages>2432-2440</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z darkadapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to- Pg conversion as resulting from an out-of-plane rotation of the chromophore’s peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantumchemical calculations in the framework of multiscale modeling to rationalize the absorptionmaxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31964827</pmid><doi>10.1073/pnas.1910208117</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1286-0860</orcidid><orcidid>https://orcid.org/0000-0002-6898-7011</orcidid><orcidid>https://orcid.org/0000-0003-1637-6187</orcidid><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid><orcidid>https://orcid.org/0000-0002-7076-5936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (5), p.2432-2440
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007540
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Absorption
Biological Sciences
Chromophores
Coplanarity
Crystal structure
Crystals
Dark adaptation
Organic chemistry
PCB compounds
Phycocyanobilin
PNAS Plus
Protein structure
Proteins
Quantum chemistry
Structural members
title Structural elements regulating the photochromicity in a cyanobacteriochrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20elements%20regulating%20the%20photochromicity%20in%20a%20cyanobacteriochrome&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Xiuling&rft.date=2020-02-04&rft.volume=117&rft.issue=5&rft.spage=2432&rft.epage=2440&rft.pages=2432-2440&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910208117&rft_dat=%3Cjstor_pubme%3E26928841%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354331342&rft_id=info:pmid/31964827&rft_jstor_id=26928841&rfr_iscdi=true