Photosensitive nanocarriers for specific delivery of cargo into cells

Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.2110, Article 2110
Hauptverfasser: Mena-Giraldo, Pedro, Pérez-Buitrago, Sandra, Londoño-Berrío, Maritza, Ortiz-Trujillo, Isabel C., Hoyos-Palacio, Lina M., Orozco, Jahir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2110
container_title Scientific reports
container_volume 10
creator Mena-Giraldo, Pedro
Pérez-Buitrago, Sandra
Londoño-Berrío, Maritza
Ortiz-Trujillo, Isabel C.
Hoyos-Palacio, Lina M.
Orozco, Jahir
description Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting ability, efficiency, and effectiveness. Functionality may come from cell targeting biomolecules that direct nanocarriers to a specific cell or tissue. Delivery is usually mediated by diffusion and erosion mechanisms, but in some cases, this is not sufficient to reach the expected therapeutic effects. This work reports on the development of a new photoresponsive polymeric nanocarrier (PNc)-based nanobioconjugate (NBc) for specific photo-delivery of cargo into target cells. We readily synthesized the PNcs by modification of chitosan with ultraviolet (UV)-photosensitive azobenzene molecules, with Nile red and dofetilide as cargo models to prove the encapsulation/release concept. The PNcs were further functionalized with the cardiac targeting transmembrane peptide and efficiently internalized into cardiomyocytes, as a cell line model. Intracellular cargo-release was dramatically accelerated upon a very short UV-light irradiation time. Delivering cargo in a time-space controlled fashion by means of NBcs is a promising strategy to increase the intracellular cargo concentration, to decrease dose and cargo side effects, thereby improving the effectiveness of a therapeutic regime.
doi_str_mv 10.1038/s41598-020-58865-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7005817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352323314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f71182801b7a1652206662808e9dd72cb028b906944ead94266a471ffbf9ced33</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEYL8AQ9mE8-r_dpuezExBD8SEj3ouel2WyhZttguJPDrrYKIF-cy08w770wfAC4RvEGQ8NtIUSF4DjHMC85ZkW9PQB9DWuSYYHx6VPfAMMY5TFFgQZE4Bz2CIUlV2Qfj15nvfDRtdJ1bm6xVrdcqBGdCzKwPWVwa7azTWW2aJAibzNssKaY-c23nM22aJl6AM6uaaIb7PADvD-O30VM-eXl8Ht1Pcl0Q3OW2RIhjDlFVKsQKjCFjLL25EXVdYl1BzCsBmaDUqFpQzJiiJbK2skKbmpABuNv5LlfVwtTatF1QjVwGt1BhI71y8m-ndTM59WtZps9zVCaD671B8B8rEzs596vQppslJkWiRQiiSYV3Kh18jMHYwwYE5Rd9uaMvE335TV9u09DV8W2HkR_WSUB2gpha7dSE393_2H4CGJWRDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352323314</pqid></control><display><type>article</type><title>Photosensitive nanocarriers for specific delivery of cargo into cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mena-Giraldo, Pedro ; Pérez-Buitrago, Sandra ; Londoño-Berrío, Maritza ; Ortiz-Trujillo, Isabel C. ; Hoyos-Palacio, Lina M. ; Orozco, Jahir</creator><creatorcontrib>Mena-Giraldo, Pedro ; Pérez-Buitrago, Sandra ; Londoño-Berrío, Maritza ; Ortiz-Trujillo, Isabel C. ; Hoyos-Palacio, Lina M. ; Orozco, Jahir</creatorcontrib><description>Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting ability, efficiency, and effectiveness. Functionality may come from cell targeting biomolecules that direct nanocarriers to a specific cell or tissue. Delivery is usually mediated by diffusion and erosion mechanisms, but in some cases, this is not sufficient to reach the expected therapeutic effects. This work reports on the development of a new photoresponsive polymeric nanocarrier (PNc)-based nanobioconjugate (NBc) for specific photo-delivery of cargo into target cells. We readily synthesized the PNcs by modification of chitosan with ultraviolet (UV)-photosensitive azobenzene molecules, with Nile red and dofetilide as cargo models to prove the encapsulation/release concept. The PNcs were further functionalized with the cardiac targeting transmembrane peptide and efficiently internalized into cardiomyocytes, as a cell line model. Intracellular cargo-release was dramatically accelerated upon a very short UV-light irradiation time. Delivering cargo in a time-space controlled fashion by means of NBcs is a promising strategy to increase the intracellular cargo concentration, to decrease dose and cargo side effects, thereby improving the effectiveness of a therapeutic regime.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-58865-z</identifier><identifier>PMID: 32034197</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 639/624/1111/55 ; 639/925/352/152 ; A549 Cells - drug effects ; A549 Cells - metabolism ; Achievement tests ; Bioavailability ; Cardiomyocytes ; Cell Line ; Chitosan ; Controlled release ; Drug delivery ; Drug Delivery Systems - methods ; Drug dosages ; Encapsulation ; Fourier transforms ; Hep G2 Cells - drug effects ; Hep G2 Cells - metabolism ; Humanities and Social Sciences ; Humans ; Intracellular ; Irradiation ; Light ; Microscopy ; Molecular weight ; multidisciplinary ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Nanocapsules - chemistry ; Nanocapsules - radiation effects ; Nanocapsules - toxicity ; Nanoparticles - chemistry ; Nanoparticles - radiation effects ; Nanoparticles - toxicity ; NMR ; Nuclear magnetic resonance ; Peptides ; Polymers ; Potash ; Science ; Science (multidisciplinary) ; Ultraviolet radiation ; Ultraviolet Rays</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.2110, Article 2110</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f71182801b7a1652206662808e9dd72cb028b906944ead94266a471ffbf9ced33</citedby><cites>FETCH-LOGICAL-c532t-f71182801b7a1652206662808e9dd72cb028b906944ead94266a471ffbf9ced33</cites><orcidid>0000-0002-0391-0494 ; 0000-0002-4968-7902 ; 0000-0002-5413-0965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32034197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mena-Giraldo, Pedro</creatorcontrib><creatorcontrib>Pérez-Buitrago, Sandra</creatorcontrib><creatorcontrib>Londoño-Berrío, Maritza</creatorcontrib><creatorcontrib>Ortiz-Trujillo, Isabel C.</creatorcontrib><creatorcontrib>Hoyos-Palacio, Lina M.</creatorcontrib><creatorcontrib>Orozco, Jahir</creatorcontrib><title>Photosensitive nanocarriers for specific delivery of cargo into cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting ability, efficiency, and effectiveness. Functionality may come from cell targeting biomolecules that direct nanocarriers to a specific cell or tissue. Delivery is usually mediated by diffusion and erosion mechanisms, but in some cases, this is not sufficient to reach the expected therapeutic effects. This work reports on the development of a new photoresponsive polymeric nanocarrier (PNc)-based nanobioconjugate (NBc) for specific photo-delivery of cargo into target cells. We readily synthesized the PNcs by modification of chitosan with ultraviolet (UV)-photosensitive azobenzene molecules, with Nile red and dofetilide as cargo models to prove the encapsulation/release concept. The PNcs were further functionalized with the cardiac targeting transmembrane peptide and efficiently internalized into cardiomyocytes, as a cell line model. Intracellular cargo-release was dramatically accelerated upon a very short UV-light irradiation time. Delivering cargo in a time-space controlled fashion by means of NBcs is a promising strategy to increase the intracellular cargo concentration, to decrease dose and cargo side effects, thereby improving the effectiveness of a therapeutic regime.</description><subject>14/63</subject><subject>639/624/1111/55</subject><subject>639/925/352/152</subject><subject>A549 Cells - drug effects</subject><subject>A549 Cells - metabolism</subject><subject>Achievement tests</subject><subject>Bioavailability</subject><subject>Cardiomyocytes</subject><subject>Cell Line</subject><subject>Chitosan</subject><subject>Controlled release</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug dosages</subject><subject>Encapsulation</subject><subject>Fourier transforms</subject><subject>Hep G2 Cells - drug effects</subject><subject>Hep G2 Cells - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intracellular</subject><subject>Irradiation</subject><subject>Light</subject><subject>Microscopy</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - radiation effects</subject><subject>Nanocapsules - toxicity</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - radiation effects</subject><subject>Nanoparticles - toxicity</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Polymers</subject><subject>Potash</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEQhhujEYL8AQ9mE8-r_dpuezExBD8SEj3ouel2WyhZttguJPDrrYKIF-cy08w770wfAC4RvEGQ8NtIUSF4DjHMC85ZkW9PQB9DWuSYYHx6VPfAMMY5TFFgQZE4Bz2CIUlV2Qfj15nvfDRtdJ1bm6xVrdcqBGdCzKwPWVwa7azTWW2aJAibzNssKaY-c23nM22aJl6AM6uaaIb7PADvD-O30VM-eXl8Ht1Pcl0Q3OW2RIhjDlFVKsQKjCFjLL25EXVdYl1BzCsBmaDUqFpQzJiiJbK2skKbmpABuNv5LlfVwtTatF1QjVwGt1BhI71y8m-ndTM59WtZps9zVCaD671B8B8rEzs596vQppslJkWiRQiiSYV3Kh18jMHYwwYE5Rd9uaMvE335TV9u09DV8W2HkR_WSUB2gpha7dSE393_2H4CGJWRDw</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Mena-Giraldo, Pedro</creator><creator>Pérez-Buitrago, Sandra</creator><creator>Londoño-Berrío, Maritza</creator><creator>Ortiz-Trujillo, Isabel C.</creator><creator>Hoyos-Palacio, Lina M.</creator><creator>Orozco, Jahir</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0391-0494</orcidid><orcidid>https://orcid.org/0000-0002-4968-7902</orcidid><orcidid>https://orcid.org/0000-0002-5413-0965</orcidid></search><sort><creationdate>20200207</creationdate><title>Photosensitive nanocarriers for specific delivery of cargo into cells</title><author>Mena-Giraldo, Pedro ; Pérez-Buitrago, Sandra ; Londoño-Berrío, Maritza ; Ortiz-Trujillo, Isabel C. ; Hoyos-Palacio, Lina M. ; Orozco, Jahir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f71182801b7a1652206662808e9dd72cb028b906944ead94266a471ffbf9ced33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/63</topic><topic>639/624/1111/55</topic><topic>639/925/352/152</topic><topic>A549 Cells - drug effects</topic><topic>A549 Cells - metabolism</topic><topic>Achievement tests</topic><topic>Bioavailability</topic><topic>Cardiomyocytes</topic><topic>Cell Line</topic><topic>Chitosan</topic><topic>Controlled release</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug dosages</topic><topic>Encapsulation</topic><topic>Fourier transforms</topic><topic>Hep G2 Cells - drug effects</topic><topic>Hep G2 Cells - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intracellular</topic><topic>Irradiation</topic><topic>Light</topic><topic>Microscopy</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - radiation effects</topic><topic>Nanocapsules - toxicity</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - radiation effects</topic><topic>Nanoparticles - toxicity</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Polymers</topic><topic>Potash</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mena-Giraldo, Pedro</creatorcontrib><creatorcontrib>Pérez-Buitrago, Sandra</creatorcontrib><creatorcontrib>Londoño-Berrío, Maritza</creatorcontrib><creatorcontrib>Ortiz-Trujillo, Isabel C.</creatorcontrib><creatorcontrib>Hoyos-Palacio, Lina M.</creatorcontrib><creatorcontrib>Orozco, Jahir</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mena-Giraldo, Pedro</au><au>Pérez-Buitrago, Sandra</au><au>Londoño-Berrío, Maritza</au><au>Ortiz-Trujillo, Isabel C.</au><au>Hoyos-Palacio, Lina M.</au><au>Orozco, Jahir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosensitive nanocarriers for specific delivery of cargo into cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>2110</spage><pages>2110-</pages><artnum>2110</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting ability, efficiency, and effectiveness. Functionality may come from cell targeting biomolecules that direct nanocarriers to a specific cell or tissue. Delivery is usually mediated by diffusion and erosion mechanisms, but in some cases, this is not sufficient to reach the expected therapeutic effects. This work reports on the development of a new photoresponsive polymeric nanocarrier (PNc)-based nanobioconjugate (NBc) for specific photo-delivery of cargo into target cells. We readily synthesized the PNcs by modification of chitosan with ultraviolet (UV)-photosensitive azobenzene molecules, with Nile red and dofetilide as cargo models to prove the encapsulation/release concept. The PNcs were further functionalized with the cardiac targeting transmembrane peptide and efficiently internalized into cardiomyocytes, as a cell line model. Intracellular cargo-release was dramatically accelerated upon a very short UV-light irradiation time. Delivering cargo in a time-space controlled fashion by means of NBcs is a promising strategy to increase the intracellular cargo concentration, to decrease dose and cargo side effects, thereby improving the effectiveness of a therapeutic regime.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32034197</pmid><doi>10.1038/s41598-020-58865-z</doi><orcidid>https://orcid.org/0000-0002-0391-0494</orcidid><orcidid>https://orcid.org/0000-0002-4968-7902</orcidid><orcidid>https://orcid.org/0000-0002-5413-0965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-02, Vol.10 (1), p.2110, Article 2110
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7005817
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 14/63
639/624/1111/55
639/925/352/152
A549 Cells - drug effects
A549 Cells - metabolism
Achievement tests
Bioavailability
Cardiomyocytes
Cell Line
Chitosan
Controlled release
Drug delivery
Drug Delivery Systems - methods
Drug dosages
Encapsulation
Fourier transforms
Hep G2 Cells - drug effects
Hep G2 Cells - metabolism
Humanities and Social Sciences
Humans
Intracellular
Irradiation
Light
Microscopy
Molecular weight
multidisciplinary
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Nanocapsules - chemistry
Nanocapsules - radiation effects
Nanocapsules - toxicity
Nanoparticles - chemistry
Nanoparticles - radiation effects
Nanoparticles - toxicity
NMR
Nuclear magnetic resonance
Peptides
Polymers
Potash
Science
Science (multidisciplinary)
Ultraviolet radiation
Ultraviolet Rays
title Photosensitive nanocarriers for specific delivery of cargo into cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosensitive%20nanocarriers%20for%20specific%20delivery%20of%20cargo%20into%20cells&rft.jtitle=Scientific%20reports&rft.au=Mena-Giraldo,%20Pedro&rft.date=2020-02-07&rft.volume=10&rft.issue=1&rft.spage=2110&rft.pages=2110-&rft.artnum=2110&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-58865-z&rft_dat=%3Cproquest_pubme%3E2352323314%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352323314&rft_id=info:pmid/32034197&rfr_iscdi=true