Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding
Scoring systems are suboptimal for determining risk in patients with upper gastrointestinal bleeding (UGIB); these might be improved by a machine learning model. We used machine learning to develop a model to calculate the risk of hospital-based intervention or death in patients with UGIB and compar...
Gespeichert in:
Veröffentlicht in: | Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 2020-01, Vol.158 (1), p.160-167 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 160 |
container_title | Gastroenterology (New York, N.Y. 1943) |
container_volume | 158 |
creator | Shung, Dennis L. Au, Benjamin Taylor, Richard Andrew Tay, J. Kenneth Laursen, Stig B. Stanley, Adrian J. Dalton, Harry R. Ngu, Jeffrey Schultz, Michael Laine, Loren |
description | Scoring systems are suboptimal for determining risk in patients with upper gastrointestinal bleeding (UGIB); these might be improved by a machine learning model. We used machine learning to develop a model to calculate the risk of hospital-based intervention or death in patients with UGIB and compared its performance with other scoring systems.
We analyzed data collected from consecutive unselected patients with UGIB from medical centers in 4 countries (the United States, Scotland, England, and Denmark; n = 1958) from March 2014 through March 2015. We used the data to derive and internally validate a gradient-boosting machine learning model to identify patients who met a composite endpoint of hospital-based intervention (transfusion or hemostatic intervention) or death within 30 days. We compared the performance of the machine learning prediction model with validated pre-endoscopic clinical risk scoring systems (the Glasgow-Blatchford score [GBS], admission Rockall score, and AIMS65). We externally validated the machine learning model using data from 2 Asia-Pacific sites (Singapore and New Zealand; n = 399). Performance was measured by area under receiver operating characteristic curve (AUC) analysis.
The machine learning model identified patients who met the composite endpoint with an AUC of 0.91 in the internal validation set; the clinical scoring systems identified patients who met the composite endpoint with AUC values of 0.88 for the GBS (P = .001), 0.73 for Rockall score (P < .001), and 0.78 for AIMS65 score (P < .001). In the external validation cohort, the machine learning model identified patients who met the composite endpoint with an AUC of 0.90, the GBS with an AUC of 0.87 (P = .004), the Rockall score with an AUC of 0.66 (P < .001), and the AIMS65 with an AUC of 0.64 (P < .001). At cutoff scores at which the machine learning model and GBS identified patients who met the composite endpoint with 100% sensitivity, the specificity values were 26% with the machine learning model versus 12% with GBS (P < .001).
We developed a machine learning model that identifies patients with UGIB who met a composite endpoint of hospital-based intervention or death within 30 days with a greater AUC and higher levels of specificity, at 100% sensitivity, than validated clinical risk scoring systems. This model could increase identification of low-risk patients who can be safely discharged from the emergency department for outpatient management.
[Display omitted] |
doi_str_mv | 10.1053/j.gastro.2019.09.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016508519413425</els_id><sourcerecordid>2299140710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1a2bf74e5a7273c3f610f0c137ca780c9e093a9b75563961158476759d93c0713</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EomngHyDkI5cN_liv1xckiEqLlKoSbblajnc2cXDsYDuV8u9xSClwQRppDvPMxzsvQm8omVEi-PvNbGVySXHGCFUzUoOoZ2hCBesbQih7jiY1dY0gvThD5zlvSCV4T1-iM05Fx_pWTtDhm_FuMMXFgOOIDb42du0C4AWYFFxY4es4gMd3a1Pwzb7sII0xbTOeexecNR5_dfk7vrUxHeHbQy5Qq5XB97sK48tfR7pQIBcXKv_JAwyVfYVejMZneP2Yp-j-88Xd_KpZ3Fx-mX9cNLbteGmoYctRtiCMZJJbPnaUjMRSLq2RPbEKqiijllKIjquOUlF1dVKoQXFLJOVT9OE0d7dfbmGwEEoyXu-S25p00NE4_W8luLVexQctCWkZ6-uAd48DUvyxrzL01mUL3psAcZ81Y0rRtq4iFW1PqE0x5wTj0xpK9NE1vdEn1_TRNU1q1POn6O3fJz41_bbpjwaoj3pwkHS2DoKtj0xgix6i-_-Gnx5zrHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299140710</pqid></control><display><type>article</type><title>Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Shung, Dennis L. ; Au, Benjamin ; Taylor, Richard Andrew ; Tay, J. Kenneth ; Laursen, Stig B. ; Stanley, Adrian J. ; Dalton, Harry R. ; Ngu, Jeffrey ; Schultz, Michael ; Laine, Loren</creator><creatorcontrib>Shung, Dennis L. ; Au, Benjamin ; Taylor, Richard Andrew ; Tay, J. Kenneth ; Laursen, Stig B. ; Stanley, Adrian J. ; Dalton, Harry R. ; Ngu, Jeffrey ; Schultz, Michael ; Laine, Loren</creatorcontrib><description>Scoring systems are suboptimal for determining risk in patients with upper gastrointestinal bleeding (UGIB); these might be improved by a machine learning model. We used machine learning to develop a model to calculate the risk of hospital-based intervention or death in patients with UGIB and compared its performance with other scoring systems.
We analyzed data collected from consecutive unselected patients with UGIB from medical centers in 4 countries (the United States, Scotland, England, and Denmark; n = 1958) from March 2014 through March 2015. We used the data to derive and internally validate a gradient-boosting machine learning model to identify patients who met a composite endpoint of hospital-based intervention (transfusion or hemostatic intervention) or death within 30 days. We compared the performance of the machine learning prediction model with validated pre-endoscopic clinical risk scoring systems (the Glasgow-Blatchford score [GBS], admission Rockall score, and AIMS65). We externally validated the machine learning model using data from 2 Asia-Pacific sites (Singapore and New Zealand; n = 399). Performance was measured by area under receiver operating characteristic curve (AUC) analysis.
The machine learning model identified patients who met the composite endpoint with an AUC of 0.91 in the internal validation set; the clinical scoring systems identified patients who met the composite endpoint with AUC values of 0.88 for the GBS (P = .001), 0.73 for Rockall score (P < .001), and 0.78 for AIMS65 score (P < .001). In the external validation cohort, the machine learning model identified patients who met the composite endpoint with an AUC of 0.90, the GBS with an AUC of 0.87 (P = .004), the Rockall score with an AUC of 0.66 (P < .001), and the AIMS65 with an AUC of 0.64 (P < .001). At cutoff scores at which the machine learning model and GBS identified patients who met the composite endpoint with 100% sensitivity, the specificity values were 26% with the machine learning model versus 12% with GBS (P < .001).
We developed a machine learning model that identifies patients with UGIB who met a composite endpoint of hospital-based intervention or death within 30 days with a greater AUC and higher levels of specificity, at 100% sensitivity, than validated clinical risk scoring systems. This model could increase identification of low-risk patients who can be safely discharged from the emergency department for outpatient management.
[Display omitted]</description><identifier>ISSN: 0016-5085</identifier><identifier>EISSN: 1528-0012</identifier><identifier>DOI: 10.1053/j.gastro.2019.09.009</identifier><identifier>PMID: 31562847</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Artificial Intelligence ; Blood Transfusion - statistics & numerical data ; Emergency Service, Hospital - statistics & numerical data ; Female ; Gastrointestinal Hemorrhage - diagnosis ; Gastrointestinal Hemorrhage - therapy ; Hemostatic Techniques - statistics & numerical data ; Humans ; Machine Learning ; Male ; Middle Aged ; Models, Biological ; Mortality ; Prediction ; Prognosis ; Prognostic Factor ; Risk Assessment - methods ; ROC Curve</subject><ispartof>Gastroenterology (New York, N.Y. 1943), 2020-01, Vol.158 (1), p.160-167</ispartof><rights>2020 AGA Institute</rights><rights>Copyright © 2020 AGA Institute. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1a2bf74e5a7273c3f610f0c137ca780c9e093a9b75563961158476759d93c0713</citedby><cites>FETCH-LOGICAL-c463t-1a2bf74e5a7273c3f610f0c137ca780c9e093a9b75563961158476759d93c0713</cites><orcidid>0000-0003-3116-0747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1053/j.gastro.2019.09.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31562847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shung, Dennis L.</creatorcontrib><creatorcontrib>Au, Benjamin</creatorcontrib><creatorcontrib>Taylor, Richard Andrew</creatorcontrib><creatorcontrib>Tay, J. Kenneth</creatorcontrib><creatorcontrib>Laursen, Stig B.</creatorcontrib><creatorcontrib>Stanley, Adrian J.</creatorcontrib><creatorcontrib>Dalton, Harry R.</creatorcontrib><creatorcontrib>Ngu, Jeffrey</creatorcontrib><creatorcontrib>Schultz, Michael</creatorcontrib><creatorcontrib>Laine, Loren</creatorcontrib><title>Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding</title><title>Gastroenterology (New York, N.Y. 1943)</title><addtitle>Gastroenterology</addtitle><description>Scoring systems are suboptimal for determining risk in patients with upper gastrointestinal bleeding (UGIB); these might be improved by a machine learning model. We used machine learning to develop a model to calculate the risk of hospital-based intervention or death in patients with UGIB and compared its performance with other scoring systems.
We analyzed data collected from consecutive unselected patients with UGIB from medical centers in 4 countries (the United States, Scotland, England, and Denmark; n = 1958) from March 2014 through March 2015. We used the data to derive and internally validate a gradient-boosting machine learning model to identify patients who met a composite endpoint of hospital-based intervention (transfusion or hemostatic intervention) or death within 30 days. We compared the performance of the machine learning prediction model with validated pre-endoscopic clinical risk scoring systems (the Glasgow-Blatchford score [GBS], admission Rockall score, and AIMS65). We externally validated the machine learning model using data from 2 Asia-Pacific sites (Singapore and New Zealand; n = 399). Performance was measured by area under receiver operating characteristic curve (AUC) analysis.
The machine learning model identified patients who met the composite endpoint with an AUC of 0.91 in the internal validation set; the clinical scoring systems identified patients who met the composite endpoint with AUC values of 0.88 for the GBS (P = .001), 0.73 for Rockall score (P < .001), and 0.78 for AIMS65 score (P < .001). In the external validation cohort, the machine learning model identified patients who met the composite endpoint with an AUC of 0.90, the GBS with an AUC of 0.87 (P = .004), the Rockall score with an AUC of 0.66 (P < .001), and the AIMS65 with an AUC of 0.64 (P < .001). At cutoff scores at which the machine learning model and GBS identified patients who met the composite endpoint with 100% sensitivity, the specificity values were 26% with the machine learning model versus 12% with GBS (P < .001).
We developed a machine learning model that identifies patients with UGIB who met a composite endpoint of hospital-based intervention or death within 30 days with a greater AUC and higher levels of specificity, at 100% sensitivity, than validated clinical risk scoring systems. This model could increase identification of low-risk patients who can be safely discharged from the emergency department for outpatient management.
[Display omitted]</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Artificial Intelligence</subject><subject>Blood Transfusion - statistics & numerical data</subject><subject>Emergency Service, Hospital - statistics & numerical data</subject><subject>Female</subject><subject>Gastrointestinal Hemorrhage - diagnosis</subject><subject>Gastrointestinal Hemorrhage - therapy</subject><subject>Hemostatic Techniques - statistics & numerical data</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Prediction</subject><subject>Prognosis</subject><subject>Prognostic Factor</subject><subject>Risk Assessment - methods</subject><subject>ROC Curve</subject><issn>0016-5085</issn><issn>1528-0012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhi0EomngHyDkI5cN_liv1xckiEqLlKoSbblajnc2cXDsYDuV8u9xSClwQRppDvPMxzsvQm8omVEi-PvNbGVySXHGCFUzUoOoZ2hCBesbQih7jiY1dY0gvThD5zlvSCV4T1-iM05Fx_pWTtDhm_FuMMXFgOOIDb42du0C4AWYFFxY4es4gMd3a1Pwzb7sII0xbTOeexecNR5_dfk7vrUxHeHbQy5Qq5XB97sK48tfR7pQIBcXKv_JAwyVfYVejMZneP2Yp-j-88Xd_KpZ3Fx-mX9cNLbteGmoYctRtiCMZJJbPnaUjMRSLq2RPbEKqiijllKIjquOUlF1dVKoQXFLJOVT9OE0d7dfbmGwEEoyXu-S25p00NE4_W8luLVexQctCWkZ6-uAd48DUvyxrzL01mUL3psAcZ81Y0rRtq4iFW1PqE0x5wTj0xpK9NE1vdEn1_TRNU1q1POn6O3fJz41_bbpjwaoj3pwkHS2DoKtj0xgix6i-_-Gnx5zrHM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shung, Dennis L.</creator><creator>Au, Benjamin</creator><creator>Taylor, Richard Andrew</creator><creator>Tay, J. Kenneth</creator><creator>Laursen, Stig B.</creator><creator>Stanley, Adrian J.</creator><creator>Dalton, Harry R.</creator><creator>Ngu, Jeffrey</creator><creator>Schultz, Michael</creator><creator>Laine, Loren</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3116-0747</orcidid></search><sort><creationdate>20200101</creationdate><title>Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding</title><author>Shung, Dennis L. ; Au, Benjamin ; Taylor, Richard Andrew ; Tay, J. Kenneth ; Laursen, Stig B. ; Stanley, Adrian J. ; Dalton, Harry R. ; Ngu, Jeffrey ; Schultz, Michael ; Laine, Loren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1a2bf74e5a7273c3f610f0c137ca780c9e093a9b75563961158476759d93c0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Artificial Intelligence</topic><topic>Blood Transfusion - statistics & numerical data</topic><topic>Emergency Service, Hospital - statistics & numerical data</topic><topic>Female</topic><topic>Gastrointestinal Hemorrhage - diagnosis</topic><topic>Gastrointestinal Hemorrhage - therapy</topic><topic>Hemostatic Techniques - statistics & numerical data</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Prediction</topic><topic>Prognosis</topic><topic>Prognostic Factor</topic><topic>Risk Assessment - methods</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shung, Dennis L.</creatorcontrib><creatorcontrib>Au, Benjamin</creatorcontrib><creatorcontrib>Taylor, Richard Andrew</creatorcontrib><creatorcontrib>Tay, J. Kenneth</creatorcontrib><creatorcontrib>Laursen, Stig B.</creatorcontrib><creatorcontrib>Stanley, Adrian J.</creatorcontrib><creatorcontrib>Dalton, Harry R.</creatorcontrib><creatorcontrib>Ngu, Jeffrey</creatorcontrib><creatorcontrib>Schultz, Michael</creatorcontrib><creatorcontrib>Laine, Loren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shung, Dennis L.</au><au>Au, Benjamin</au><au>Taylor, Richard Andrew</au><au>Tay, J. Kenneth</au><au>Laursen, Stig B.</au><au>Stanley, Adrian J.</au><au>Dalton, Harry R.</au><au>Ngu, Jeffrey</au><au>Schultz, Michael</au><au>Laine, Loren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding</atitle><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle><addtitle>Gastroenterology</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>158</volume><issue>1</issue><spage>160</spage><epage>167</epage><pages>160-167</pages><issn>0016-5085</issn><eissn>1528-0012</eissn><abstract>Scoring systems are suboptimal for determining risk in patients with upper gastrointestinal bleeding (UGIB); these might be improved by a machine learning model. We used machine learning to develop a model to calculate the risk of hospital-based intervention or death in patients with UGIB and compared its performance with other scoring systems.
We analyzed data collected from consecutive unselected patients with UGIB from medical centers in 4 countries (the United States, Scotland, England, and Denmark; n = 1958) from March 2014 through March 2015. We used the data to derive and internally validate a gradient-boosting machine learning model to identify patients who met a composite endpoint of hospital-based intervention (transfusion or hemostatic intervention) or death within 30 days. We compared the performance of the machine learning prediction model with validated pre-endoscopic clinical risk scoring systems (the Glasgow-Blatchford score [GBS], admission Rockall score, and AIMS65). We externally validated the machine learning model using data from 2 Asia-Pacific sites (Singapore and New Zealand; n = 399). Performance was measured by area under receiver operating characteristic curve (AUC) analysis.
The machine learning model identified patients who met the composite endpoint with an AUC of 0.91 in the internal validation set; the clinical scoring systems identified patients who met the composite endpoint with AUC values of 0.88 for the GBS (P = .001), 0.73 for Rockall score (P < .001), and 0.78 for AIMS65 score (P < .001). In the external validation cohort, the machine learning model identified patients who met the composite endpoint with an AUC of 0.90, the GBS with an AUC of 0.87 (P = .004), the Rockall score with an AUC of 0.66 (P < .001), and the AIMS65 with an AUC of 0.64 (P < .001). At cutoff scores at which the machine learning model and GBS identified patients who met the composite endpoint with 100% sensitivity, the specificity values were 26% with the machine learning model versus 12% with GBS (P < .001).
We developed a machine learning model that identifies patients with UGIB who met a composite endpoint of hospital-based intervention or death within 30 days with a greater AUC and higher levels of specificity, at 100% sensitivity, than validated clinical risk scoring systems. This model could increase identification of low-risk patients who can be safely discharged from the emergency department for outpatient management.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31562847</pmid><doi>10.1053/j.gastro.2019.09.009</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3116-0747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-5085 |
ispartof | Gastroenterology (New York, N.Y. 1943), 2020-01, Vol.158 (1), p.160-167 |
issn | 0016-5085 1528-0012 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004228 |
source | MEDLINE; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
subjects | Adult Aged Aged, 80 and over Artificial Intelligence Blood Transfusion - statistics & numerical data Emergency Service, Hospital - statistics & numerical data Female Gastrointestinal Hemorrhage - diagnosis Gastrointestinal Hemorrhage - therapy Hemostatic Techniques - statistics & numerical data Humans Machine Learning Male Middle Aged Models, Biological Mortality Prediction Prognosis Prognostic Factor Risk Assessment - methods ROC Curve |
title | Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20a%20Machine%20Learning%20Model%20That%20Outperforms%20Clinical%20Risk%20Scoring%20Systems%20for%20Upper%20Gastrointestinal%20Bleeding&rft.jtitle=Gastroenterology%20(New%20York,%20N.Y.%201943)&rft.au=Shung,%20Dennis%20L.&rft.date=2020-01-01&rft.volume=158&rft.issue=1&rft.spage=160&rft.epage=167&rft.pages=160-167&rft.issn=0016-5085&rft.eissn=1528-0012&rft_id=info:doi/10.1053/j.gastro.2019.09.009&rft_dat=%3Cproquest_pubme%3E2299140710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299140710&rft_id=info:pmid/31562847&rft_els_id=S0016508519413425&rfr_iscdi=true |