Computer‐Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns

A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-01, Vol.26 (3), p.643-649
Hauptverfasser: Cui, Haiyang, Cao, Hao, Cai, Haiying, Jaeger, Karl‐Erich, Davari, Mehdi D., Schwaneberg, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 649
container_issue 3
container_start_page 643
container_title Chemistry : a European journal
container_volume 26
creator Cui, Haiyang
Cao, Hao
Cai, Haiying
Jaeger, Karl‐Erich
Davari, Mehdi D.
Schwaneberg, Ulrich
description A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7‐fold improved specific activity in 18.3 % (v/v) 1‐butyl‐3‐methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time‐efficient manner. True North: The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold).
doi_str_mv 10.1002/chem.201903994
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7003928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297126420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5714-626f19fd14e658dbed120ce42803fba62dd6cd84588827c293ebf1706d65cd713</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhyhFZ4lIO2fojduILUglbFqkIqZSz5diT1lUSb-2kVW9I_AF-I7-kCdsuHxdOPswzz3jmReglJUtKCDu0F9AtGaGKcKXyR2hBBaMZL6R4jBZE5UUmBVd76FlKl4QQJTl_ivY4FYKTkizQ9yp0m3GA-PPbj6OUfBrA4VOwoat9bwYfenwwIyal0zf4DMw0MOEx4XW4wUPYoYDfQQ-Nt960-MtYp8EP49yecBNDh9_7CHZ2r65D-6uAKzNp_XmfnqMnjWkTvLh_99HX49VZtc5OPn_4WB2dZFYUNM8kkw1VjaM5SFG6GhxlxELOSsKb2kjmnLSuzEVZlqywTHGoG1oQ6aSwrqB8H73dejdj3YGz0A_RtHoTfWfirQ7G678rvb_Q5-FaF2S6LisnwcG9IIarEdKgO58stK3pIYxJM6YKymTOyIS-_ge9DGPsp_U04zlTiuSCTdRyS9kYUorQ7D5DiZ7z1XO-epfv1PDqzxV2-EOgE6C2wI1v4fY_Ol2tV59-y-8A0Wa1lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342990452</pqid></control><display><type>article</type><title>Computer‐Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns</title><source>Wiley Online Library</source><creator>Cui, Haiyang ; Cao, Hao ; Cai, Haiying ; Jaeger, Karl‐Erich ; Davari, Mehdi D. ; Schwaneberg, Ulrich</creator><creatorcontrib>Cui, Haiyang ; Cao, Hao ; Cai, Haiying ; Jaeger, Karl‐Erich ; Davari, Mehdi D. ; Schwaneberg, Ulrich</creatorcontrib><description>A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7‐fold improved specific activity in 18.3 % (v/v) 1‐butyl‐3‐methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time‐efficient manner. True North: The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold).</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201903994</identifier><identifier>PMID: 31553080</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bacillus subtilis lipase A ; Chemistry ; Directed evolution ; Enzymes ; foldX ; Free energy ; Iterative methods ; Lipase ; Performance evaluation ; Protein engineering ; Recombinants ; Recombination ; Researchers</subject><ispartof>Chemistry : a European journal, 2020-01, Vol.26 (3), p.643-649</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5714-626f19fd14e658dbed120ce42803fba62dd6cd84588827c293ebf1706d65cd713</citedby><cites>FETCH-LOGICAL-c5714-626f19fd14e658dbed120ce42803fba62dd6cd84588827c293ebf1706d65cd713</cites><orcidid>0000-0002-6036-0708 ; 0000-0001-8360-0447 ; 0000-0003-4026-701X ; 0000-0003-0089-7156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201903994$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201903994$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31553080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Haiyang</creatorcontrib><creatorcontrib>Cao, Hao</creatorcontrib><creatorcontrib>Cai, Haiying</creatorcontrib><creatorcontrib>Jaeger, Karl‐Erich</creatorcontrib><creatorcontrib>Davari, Mehdi D.</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><title>Computer‐Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7‐fold improved specific activity in 18.3 % (v/v) 1‐butyl‐3‐methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time‐efficient manner. True North: The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold).</description><subject>Bacillus subtilis lipase A</subject><subject>Chemistry</subject><subject>Directed evolution</subject><subject>Enzymes</subject><subject>foldX</subject><subject>Free energy</subject><subject>Iterative methods</subject><subject>Lipase</subject><subject>Performance evaluation</subject><subject>Protein engineering</subject><subject>Recombinants</subject><subject>Recombination</subject><subject>Researchers</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkU1v1DAQhi0EokvhyhFZ4lIO2fojduILUglbFqkIqZSz5diT1lUSb-2kVW9I_AF-I7-kCdsuHxdOPswzz3jmReglJUtKCDu0F9AtGaGKcKXyR2hBBaMZL6R4jBZE5UUmBVd76FlKl4QQJTl_ivY4FYKTkizQ9yp0m3GA-PPbj6OUfBrA4VOwoat9bwYfenwwIyal0zf4DMw0MOEx4XW4wUPYoYDfQQ-Nt960-MtYp8EP49yecBNDh9_7CHZ2r65D-6uAKzNp_XmfnqMnjWkTvLh_99HX49VZtc5OPn_4WB2dZFYUNM8kkw1VjaM5SFG6GhxlxELOSsKb2kjmnLSuzEVZlqywTHGoG1oQ6aSwrqB8H73dejdj3YGz0A_RtHoTfWfirQ7G678rvb_Q5-FaF2S6LisnwcG9IIarEdKgO58stK3pIYxJM6YKymTOyIS-_ge9DGPsp_U04zlTiuSCTdRyS9kYUorQ7D5DiZ7z1XO-epfv1PDqzxV2-EOgE6C2wI1v4fY_Ol2tV59-y-8A0Wa1lg</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Cui, Haiyang</creator><creator>Cao, Hao</creator><creator>Cai, Haiying</creator><creator>Jaeger, Karl‐Erich</creator><creator>Davari, Mehdi D.</creator><creator>Schwaneberg, Ulrich</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6036-0708</orcidid><orcidid>https://orcid.org/0000-0001-8360-0447</orcidid><orcidid>https://orcid.org/0000-0003-4026-701X</orcidid><orcidid>https://orcid.org/0000-0003-0089-7156</orcidid></search><sort><creationdate>20200113</creationdate><title>Computer‐Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns</title><author>Cui, Haiyang ; Cao, Hao ; Cai, Haiying ; Jaeger, Karl‐Erich ; Davari, Mehdi D. ; Schwaneberg, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5714-626f19fd14e658dbed120ce42803fba62dd6cd84588827c293ebf1706d65cd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacillus subtilis lipase A</topic><topic>Chemistry</topic><topic>Directed evolution</topic><topic>Enzymes</topic><topic>foldX</topic><topic>Free energy</topic><topic>Iterative methods</topic><topic>Lipase</topic><topic>Performance evaluation</topic><topic>Protein engineering</topic><topic>Recombinants</topic><topic>Recombination</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Haiyang</creatorcontrib><creatorcontrib>Cao, Hao</creatorcontrib><creatorcontrib>Cai, Haiying</creatorcontrib><creatorcontrib>Jaeger, Karl‐Erich</creatorcontrib><creatorcontrib>Davari, Mehdi D.</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Haiyang</au><au>Cao, Hao</au><au>Cai, Haiying</au><au>Jaeger, Karl‐Erich</au><au>Davari, Mehdi D.</au><au>Schwaneberg, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer‐Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-01-13</date><risdate>2020</risdate><volume>26</volume><issue>3</issue><spage>643</spage><epage>649</epage><pages>643-649</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7‐fold improved specific activity in 18.3 % (v/v) 1‐butyl‐3‐methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time‐efficient manner. True North: The Computer‐assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31553080</pmid><doi>10.1002/chem.201903994</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6036-0708</orcidid><orcidid>https://orcid.org/0000-0001-8360-0447</orcidid><orcidid>https://orcid.org/0000-0003-4026-701X</orcidid><orcidid>https://orcid.org/0000-0003-0089-7156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-01, Vol.26 (3), p.643-649
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7003928
source Wiley Online Library
subjects Bacillus subtilis lipase A
Chemistry
Directed evolution
Enzymes
foldX
Free energy
Iterative methods
Lipase
Performance evaluation
Protein engineering
Recombinants
Recombination
Researchers
title Computer‐Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%E2%80%90Assisted%20Recombination%20(CompassR)%20Teaches%20us%20How%20to%20Recombine%20Beneficial%20Substitutions%20from%20Directed%20Evolution%20Campaigns&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Cui,%20Haiyang&rft.date=2020-01-13&rft.volume=26&rft.issue=3&rft.spage=643&rft.epage=649&rft.pages=643-649&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201903994&rft_dat=%3Cproquest_pubme%3E2297126420%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342990452&rft_id=info:pmid/31553080&rfr_iscdi=true