FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes

Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Nephrology 2020-02, Vol.31 (2), p.374-391
Hauptverfasser: Subramanian, Balajikarthick, Chun, Justin, Perez-Gill, Chandra, Yan, Paul, Stillman, Isaac E, Higgs, Henry N, Alper, Seth L, Schlöndorff, Johannes S, Pollak, Martin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 2
container_start_page 374
container_title Journal of the American Society of Nephrology
container_volume 31
creator Subramanian, Balajikarthick
Chun, Justin
Perez-Gill, Chandra
Yan, Paul
Stillman, Isaac E
Higgs, Henry N
Alper, Seth L
Schlöndorff, Johannes S
Pollak, Martin R
description Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.
doi_str_mv 10.1681/ASN.2019050443
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7003299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336246657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4a27ae146a700d5221796c61ef4cbc54a3f9b8f3d271bd337e0115ef1c6c5ff33</originalsourceid><addsrcrecordid>eNpVUU1PwkAU3BiNIHr1aHr0UtzvpRcTQiySIGrQ82a73eKatou7LQn_3hIQ9fRe8ubNTGYAuEZwiPgI3Y2XiyGGKIEMUkpOQB8xQmJCGTztdkh5zLkgPXARwieEiGEhzkGPoARTzkd98Joup8t4otpg61U0W6Q4emob1VhXR7NqrawP0aQ0amPy_XURp16tKlM3UdrWegcMka2jF5c7vW1MuARnhSqDuTrMAXhPH94mj_H8eTqbjOexpow3MVVYKIMoVwLCnGGMRMI1R6agOtOMKlIk2aggORYoywkRBiLETIE016woCBmA-z3vus0qk-vOkVelXHtbKb-VTln5_1LbD7lyG9npEZwkHcHtgcC7r9aERlY2aFOWqjauDRITwncpMdFBh3uo9i4Eb4qjDIJy14PsepC_PXQPN3_NHeE_wZNvQBOCfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336246657</pqid></control><display><type>article</type><title>FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Subramanian, Balajikarthick ; Chun, Justin ; Perez-Gill, Chandra ; Yan, Paul ; Stillman, Isaac E ; Higgs, Henry N ; Alper, Seth L ; Schlöndorff, Johannes S ; Pollak, Martin R</creator><creatorcontrib>Subramanian, Balajikarthick ; Chun, Justin ; Perez-Gill, Chandra ; Yan, Paul ; Stillman, Isaac E ; Higgs, Henry N ; Alper, Seth L ; Schlöndorff, Johannes S ; Pollak, Martin R</creatorcontrib><description>Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.</description><identifier>ISSN: 1046-6673</identifier><identifier>EISSN: 1533-3450</identifier><identifier>DOI: 10.1681/ASN.2019050443</identifier><identifier>PMID: 31924668</identifier><language>eng</language><publisher>United States: American Society of Nephrology</publisher><subject>Animals ; Basic Research ; Cathepsins - physiology ; Cells, Cultured ; Formins - genetics ; Formins - physiology ; Glomerulosclerosis, Focal Segmental - etiology ; Glomerulosclerosis, Focal Segmental - genetics ; HEK293 Cells ; Humans ; Mice ; Mice, Inbred C57BL ; Mutation ; Peptide Fragments - physiology ; Podocytes - physiology ; Protein Isoforms</subject><ispartof>Journal of the American Society of Nephrology, 2020-02, Vol.31 (2), p.374-391</ispartof><rights>Copyright © 2020 by the American Society of Nephrology.</rights><rights>Copyright © 2020 by the American Society of Nephrology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-4a27ae146a700d5221796c61ef4cbc54a3f9b8f3d271bd337e0115ef1c6c5ff33</citedby><cites>FETCH-LOGICAL-c456t-4a27ae146a700d5221796c61ef4cbc54a3f9b8f3d271bd337e0115ef1c6c5ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003299/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003299/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31924668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Balajikarthick</creatorcontrib><creatorcontrib>Chun, Justin</creatorcontrib><creatorcontrib>Perez-Gill, Chandra</creatorcontrib><creatorcontrib>Yan, Paul</creatorcontrib><creatorcontrib>Stillman, Isaac E</creatorcontrib><creatorcontrib>Higgs, Henry N</creatorcontrib><creatorcontrib>Alper, Seth L</creatorcontrib><creatorcontrib>Schlöndorff, Johannes S</creatorcontrib><creatorcontrib>Pollak, Martin R</creatorcontrib><title>FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes</title><title>Journal of the American Society of Nephrology</title><addtitle>J Am Soc Nephrol</addtitle><description>Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.</description><subject>Animals</subject><subject>Basic Research</subject><subject>Cathepsins - physiology</subject><subject>Cells, Cultured</subject><subject>Formins - genetics</subject><subject>Formins - physiology</subject><subject>Glomerulosclerosis, Focal Segmental - etiology</subject><subject>Glomerulosclerosis, Focal Segmental - genetics</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Peptide Fragments - physiology</subject><subject>Podocytes - physiology</subject><subject>Protein Isoforms</subject><issn>1046-6673</issn><issn>1533-3450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1PwkAU3BiNIHr1aHr0UtzvpRcTQiySIGrQ82a73eKatou7LQn_3hIQ9fRe8ubNTGYAuEZwiPgI3Y2XiyGGKIEMUkpOQB8xQmJCGTztdkh5zLkgPXARwieEiGEhzkGPoARTzkd98Joup8t4otpg61U0W6Q4emob1VhXR7NqrawP0aQ0amPy_XURp16tKlM3UdrWegcMka2jF5c7vW1MuARnhSqDuTrMAXhPH94mj_H8eTqbjOexpow3MVVYKIMoVwLCnGGMRMI1R6agOtOMKlIk2aggORYoywkRBiLETIE016woCBmA-z3vus0qk-vOkVelXHtbKb-VTln5_1LbD7lyG9npEZwkHcHtgcC7r9aERlY2aFOWqjauDRITwncpMdFBh3uo9i4Eb4qjDIJy14PsepC_PXQPN3_NHeE_wZNvQBOCfw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Subramanian, Balajikarthick</creator><creator>Chun, Justin</creator><creator>Perez-Gill, Chandra</creator><creator>Yan, Paul</creator><creator>Stillman, Isaac E</creator><creator>Higgs, Henry N</creator><creator>Alper, Seth L</creator><creator>Schlöndorff, Johannes S</creator><creator>Pollak, Martin R</creator><general>American Society of Nephrology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes</title><author>Subramanian, Balajikarthick ; Chun, Justin ; Perez-Gill, Chandra ; Yan, Paul ; Stillman, Isaac E ; Higgs, Henry N ; Alper, Seth L ; Schlöndorff, Johannes S ; Pollak, Martin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4a27ae146a700d5221796c61ef4cbc54a3f9b8f3d271bd337e0115ef1c6c5ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Basic Research</topic><topic>Cathepsins - physiology</topic><topic>Cells, Cultured</topic><topic>Formins - genetics</topic><topic>Formins - physiology</topic><topic>Glomerulosclerosis, Focal Segmental - etiology</topic><topic>Glomerulosclerosis, Focal Segmental - genetics</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Peptide Fragments - physiology</topic><topic>Podocytes - physiology</topic><topic>Protein Isoforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Balajikarthick</creatorcontrib><creatorcontrib>Chun, Justin</creatorcontrib><creatorcontrib>Perez-Gill, Chandra</creatorcontrib><creatorcontrib>Yan, Paul</creatorcontrib><creatorcontrib>Stillman, Isaac E</creatorcontrib><creatorcontrib>Higgs, Henry N</creatorcontrib><creatorcontrib>Alper, Seth L</creatorcontrib><creatorcontrib>Schlöndorff, Johannes S</creatorcontrib><creatorcontrib>Pollak, Martin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society of Nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Balajikarthick</au><au>Chun, Justin</au><au>Perez-Gill, Chandra</au><au>Yan, Paul</au><au>Stillman, Isaac E</au><au>Higgs, Henry N</au><au>Alper, Seth L</au><au>Schlöndorff, Johannes S</au><au>Pollak, Martin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes</atitle><jtitle>Journal of the American Society of Nephrology</jtitle><addtitle>J Am Soc Nephrol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>374</spage><epage>391</epage><pages>374-391</pages><issn>1046-6673</issn><eissn>1533-3450</eissn><abstract>Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.</abstract><cop>United States</cop><pub>American Society of Nephrology</pub><pmid>31924668</pmid><doi>10.1681/ASN.2019050443</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1046-6673
ispartof Journal of the American Society of Nephrology, 2020-02, Vol.31 (2), p.374-391
issn 1046-6673
1533-3450
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7003299
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Basic Research
Cathepsins - physiology
Cells, Cultured
Formins - genetics
Formins - physiology
Glomerulosclerosis, Focal Segmental - etiology
Glomerulosclerosis, Focal Segmental - genetics
HEK293 Cells
Humans
Mice
Mice, Inbred C57BL
Mutation
Peptide Fragments - physiology
Podocytes - physiology
Protein Isoforms
title FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FSGS-Causing%20INF2%20Mutation%20Impairs%20Cleaved%20INF2%20N-Fragment%20Functions%20in%20Podocytes&rft.jtitle=Journal%20of%20the%20American%20Society%20of%20Nephrology&rft.au=Subramanian,%20Balajikarthick&rft.date=2020-02-01&rft.volume=31&rft.issue=2&rft.spage=374&rft.epage=391&rft.pages=374-391&rft.issn=1046-6673&rft.eissn=1533-3450&rft_id=info:doi/10.1681/ASN.2019050443&rft_dat=%3Cproquest_pubme%3E2336246657%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336246657&rft_id=info:pmid/31924668&rfr_iscdi=true