Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation

Liposomes or biological vesicles can be created from cholesterol, phospholipid, and water. Their stability is affected by their phospholipid composition which can influence disease treatment and drug delivery efficacy. In this study, the effect of phospholipid type on the formation and stability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.1837, Article 1837
Hauptverfasser: Hashemzadeh, H., Javadi, H., Darvishi, M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1837
container_title Scientific reports
container_volume 10
creator Hashemzadeh, H.
Javadi, H.
Darvishi, M. H.
description Liposomes or biological vesicles can be created from cholesterol, phospholipid, and water. Their stability is affected by their phospholipid composition which can influence disease treatment and drug delivery efficacy. In this study, the effect of phospholipid type on the formation and stability of liposomes using coarse-grained molecular dynamics simulations is investigated. For this purpose, the simulation study of the DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and DPSM (Egg sphingomyelin) lipids were considered. All simulations were carried out using the Gromacs software and Martini force field 2.2. Energy minimization (3000 steps) model, equilibrium at constant volume to adjust the temperature at 400 Kelvin and equilibrium at constant pressure to adjust the pressure, at atmospheric pressure (1 bar) have been validated. Microsecond simulations, as well as formation analysis including density, radial distribution function, and solvent accessible surface area, demonstrated spherical nanodisc structures for the DPSM and DSPC liposomes. The results revealed that due to the cylindrical geometric structure and small-size head group, the DSPC lipid maintained its perfectly spherical structure. However, the DPSM lipid showed a conical geometric structure with larger head group than other lipids, which allows the liposome to form a micelle structure. Although the DSPC and DPSM lipids used in the laboratory tests exhibit liposome and micelle behaviors, the simulation results revealed their nanodisc structures. Energy analysis including overall energy, Van der Waals interaction energy, and electrostatic interaction energy showed that DPSM liposome is more stable than DSPC liposome.
doi_str_mv 10.1038/s41598-020-58730-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7000798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350890118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-311b483ca779c3ff508e1a441fafec1e268e487e01193ca10cc524bda414e2423</originalsourceid><addsrcrecordid>eNp9UctOGzEUtapWBYX8QBfIUtcDfg0zwwIJhfKQQEVKu7Ycz51gNLZT21Mp2fHnOA8C3fRubN177jnHPgh9o-SEEl6fRkHLpi4II0VZV5wUq0_okBFRFowz9vnD_QCNY3wmuUrWCNp8RQec5b1ch-hlmoZ2iX2HpykMOg1B9TgmNTO9SUusXIs7H6xKxjtsQT8pZ6KN2Dh8NX2cbABXj9MH3JuFj95CPMeXWHsVIhTzoIyDFlvfgx56FXC7dMoaHXE0NjfWrEfoS6f6COPdOUK_r3_8mtwW9z9v7iaX94UuKU0Fp3Qmaq5VVTWad11JaqBKCNqpDjQFdlaDqCsglDYZRYnWJROzVgkqgAnGR-hiy7sYZhZaDS7lt8pFMFaFpfTKyH8nzjzJuf8rq_xRVVNngu87guD_DBCTfPZDcNmzZDzbabL0GsW2KB18jAG6vQIlcp2c3CYncwJyk5xc5aXjj972K285ZQDfAmIeuTmEd-3_0L4Ctk2m5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350890118</pqid></control><display><type>article</type><title>Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hashemzadeh, H. ; Javadi, H. ; Darvishi, M. H.</creator><creatorcontrib>Hashemzadeh, H. ; Javadi, H. ; Darvishi, M. H.</creatorcontrib><description>Liposomes or biological vesicles can be created from cholesterol, phospholipid, and water. Their stability is affected by their phospholipid composition which can influence disease treatment and drug delivery efficacy. In this study, the effect of phospholipid type on the formation and stability of liposomes using coarse-grained molecular dynamics simulations is investigated. For this purpose, the simulation study of the DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and DPSM (Egg sphingomyelin) lipids were considered. All simulations were carried out using the Gromacs software and Martini force field 2.2. Energy minimization (3000 steps) model, equilibrium at constant volume to adjust the temperature at 400 Kelvin and equilibrium at constant pressure to adjust the pressure, at atmospheric pressure (1 bar) have been validated. Microsecond simulations, as well as formation analysis including density, radial distribution function, and solvent accessible surface area, demonstrated spherical nanodisc structures for the DPSM and DSPC liposomes. The results revealed that due to the cylindrical geometric structure and small-size head group, the DSPC lipid maintained its perfectly spherical structure. However, the DPSM lipid showed a conical geometric structure with larger head group than other lipids, which allows the liposome to form a micelle structure. Although the DSPC and DPSM lipids used in the laboratory tests exhibit liposome and micelle behaviors, the simulation results revealed their nanodisc structures. Energy analysis including overall energy, Van der Waals interaction energy, and electrostatic interaction energy showed that DPSM liposome is more stable than DSPC liposome.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-58730-z</identifier><identifier>PMID: 32020000</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 13/109 ; 14/35 ; 14/5 ; 38/71 ; 42/44 ; 631/114/2397 ; 631/57/2266 ; 639/705/1042 ; 639/925/350/2093 ; 639/925/357/341 ; Air Pressure ; Cholesterol ; Drug delivery ; Electrostatic properties ; Energy ; Energy Metabolism ; Humanities and Social Sciences ; Laboratory tests ; Lipids ; Liposomes ; Liposomes - metabolism ; Medical treatment ; Micelles ; Molecular dynamics ; multidisciplinary ; Nanostructures ; Phosphatidylcholines - metabolism ; Phosphocholine ; Phospholipid composition ; Phospholipids ; Science ; Science (multidisciplinary) ; Simulation ; Sphingomyelin ; Sphingomyelins - metabolism ; Static Electricity ; Temperature</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.1837, Article 1837</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-311b483ca779c3ff508e1a441fafec1e268e487e01193ca10cc524bda414e2423</citedby><cites>FETCH-LOGICAL-c511t-311b483ca779c3ff508e1a441fafec1e268e487e01193ca10cc524bda414e2423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000798/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000798/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32020000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashemzadeh, H.</creatorcontrib><creatorcontrib>Javadi, H.</creatorcontrib><creatorcontrib>Darvishi, M. H.</creatorcontrib><title>Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Liposomes or biological vesicles can be created from cholesterol, phospholipid, and water. Their stability is affected by their phospholipid composition which can influence disease treatment and drug delivery efficacy. In this study, the effect of phospholipid type on the formation and stability of liposomes using coarse-grained molecular dynamics simulations is investigated. For this purpose, the simulation study of the DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and DPSM (Egg sphingomyelin) lipids were considered. All simulations were carried out using the Gromacs software and Martini force field 2.2. Energy minimization (3000 steps) model, equilibrium at constant volume to adjust the temperature at 400 Kelvin and equilibrium at constant pressure to adjust the pressure, at atmospheric pressure (1 bar) have been validated. Microsecond simulations, as well as formation analysis including density, radial distribution function, and solvent accessible surface area, demonstrated spherical nanodisc structures for the DPSM and DSPC liposomes. The results revealed that due to the cylindrical geometric structure and small-size head group, the DSPC lipid maintained its perfectly spherical structure. However, the DPSM lipid showed a conical geometric structure with larger head group than other lipids, which allows the liposome to form a micelle structure. Although the DSPC and DPSM lipids used in the laboratory tests exhibit liposome and micelle behaviors, the simulation results revealed their nanodisc structures. Energy analysis including overall energy, Van der Waals interaction energy, and electrostatic interaction energy showed that DPSM liposome is more stable than DSPC liposome.</description><subject>119/118</subject><subject>13/109</subject><subject>14/35</subject><subject>14/5</subject><subject>38/71</subject><subject>42/44</subject><subject>631/114/2397</subject><subject>631/57/2266</subject><subject>639/705/1042</subject><subject>639/925/350/2093</subject><subject>639/925/357/341</subject><subject>Air Pressure</subject><subject>Cholesterol</subject><subject>Drug delivery</subject><subject>Electrostatic properties</subject><subject>Energy</subject><subject>Energy Metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Laboratory tests</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Liposomes - metabolism</subject><subject>Medical treatment</subject><subject>Micelles</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Nanostructures</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphocholine</subject><subject>Phospholipid composition</subject><subject>Phospholipids</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Sphingomyelin</subject><subject>Sphingomyelins - metabolism</subject><subject>Static Electricity</subject><subject>Temperature</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctOGzEUtapWBYX8QBfIUtcDfg0zwwIJhfKQQEVKu7Ycz51gNLZT21Mp2fHnOA8C3fRubN177jnHPgh9o-SEEl6fRkHLpi4II0VZV5wUq0_okBFRFowz9vnD_QCNY3wmuUrWCNp8RQec5b1ch-hlmoZ2iX2HpykMOg1B9TgmNTO9SUusXIs7H6xKxjtsQT8pZ6KN2Dh8NX2cbABXj9MH3JuFj95CPMeXWHsVIhTzoIyDFlvfgx56FXC7dMoaHXE0NjfWrEfoS6f6COPdOUK_r3_8mtwW9z9v7iaX94UuKU0Fp3Qmaq5VVTWad11JaqBKCNqpDjQFdlaDqCsglDYZRYnWJROzVgkqgAnGR-hiy7sYZhZaDS7lt8pFMFaFpfTKyH8nzjzJuf8rq_xRVVNngu87guD_DBCTfPZDcNmzZDzbabL0GsW2KB18jAG6vQIlcp2c3CYncwJyk5xc5aXjj972K285ZQDfAmIeuTmEd-3_0L4Ctk2m5w</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Hashemzadeh, H.</creator><creator>Javadi, H.</creator><creator>Darvishi, M. H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200204</creationdate><title>Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation</title><author>Hashemzadeh, H. ; Javadi, H. ; Darvishi, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-311b483ca779c3ff508e1a441fafec1e268e487e01193ca10cc524bda414e2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>13/109</topic><topic>14/35</topic><topic>14/5</topic><topic>38/71</topic><topic>42/44</topic><topic>631/114/2397</topic><topic>631/57/2266</topic><topic>639/705/1042</topic><topic>639/925/350/2093</topic><topic>639/925/357/341</topic><topic>Air Pressure</topic><topic>Cholesterol</topic><topic>Drug delivery</topic><topic>Electrostatic properties</topic><topic>Energy</topic><topic>Energy Metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Laboratory tests</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Liposomes - metabolism</topic><topic>Medical treatment</topic><topic>Micelles</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Nanostructures</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphocholine</topic><topic>Phospholipid composition</topic><topic>Phospholipids</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Sphingomyelin</topic><topic>Sphingomyelins - metabolism</topic><topic>Static Electricity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemzadeh, H.</creatorcontrib><creatorcontrib>Javadi, H.</creatorcontrib><creatorcontrib>Darvishi, M. H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemzadeh, H.</au><au>Javadi, H.</au><au>Darvishi, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>1837</spage><pages>1837-</pages><artnum>1837</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Liposomes or biological vesicles can be created from cholesterol, phospholipid, and water. Their stability is affected by their phospholipid composition which can influence disease treatment and drug delivery efficacy. In this study, the effect of phospholipid type on the formation and stability of liposomes using coarse-grained molecular dynamics simulations is investigated. For this purpose, the simulation study of the DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and DPSM (Egg sphingomyelin) lipids were considered. All simulations were carried out using the Gromacs software and Martini force field 2.2. Energy minimization (3000 steps) model, equilibrium at constant volume to adjust the temperature at 400 Kelvin and equilibrium at constant pressure to adjust the pressure, at atmospheric pressure (1 bar) have been validated. Microsecond simulations, as well as formation analysis including density, radial distribution function, and solvent accessible surface area, demonstrated spherical nanodisc structures for the DPSM and DSPC liposomes. The results revealed that due to the cylindrical geometric structure and small-size head group, the DSPC lipid maintained its perfectly spherical structure. However, the DPSM lipid showed a conical geometric structure with larger head group than other lipids, which allows the liposome to form a micelle structure. Although the DSPC and DPSM lipids used in the laboratory tests exhibit liposome and micelle behaviors, the simulation results revealed their nanodisc structures. Energy analysis including overall energy, Van der Waals interaction energy, and electrostatic interaction energy showed that DPSM liposome is more stable than DSPC liposome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32020000</pmid><doi>10.1038/s41598-020-58730-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-02, Vol.10 (1), p.1837, Article 1837
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7000798
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 119/118
13/109
14/35
14/5
38/71
42/44
631/114/2397
631/57/2266
639/705/1042
639/925/350/2093
639/925/357/341
Air Pressure
Cholesterol
Drug delivery
Electrostatic properties
Energy
Energy Metabolism
Humanities and Social Sciences
Laboratory tests
Lipids
Liposomes
Liposomes - metabolism
Medical treatment
Micelles
Molecular dynamics
multidisciplinary
Nanostructures
Phosphatidylcholines - metabolism
Phosphocholine
Phospholipid composition
Phospholipids
Science
Science (multidisciplinary)
Simulation
Sphingomyelin
Sphingomyelins - metabolism
Static Electricity
Temperature
title Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Structural%20stability%20and%20formation%20mechanisms%20in%20DSPC%20and%20DPSM%20liposomes:%20A%20coarse-grained%20molecular%20dynamics%20simulation&rft.jtitle=Scientific%20reports&rft.au=Hashemzadeh,%20H.&rft.date=2020-02-04&rft.volume=10&rft.issue=1&rft.spage=1837&rft.pages=1837-&rft.artnum=1837&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-58730-z&rft_dat=%3Cproquest_pubme%3E2350890118%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350890118&rft_id=info:pmid/32020000&rfr_iscdi=true