Formulation of organic and inorganic hydrogel matrices for immobilization of β‐glucosidase in microfluidic platform
The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were charac...
Gespeichert in:
Veröffentlicht in: | Engineering in life sciences 2017-07, Vol.17 (7), p.714-722 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 722 |
---|---|
container_issue | 7 |
container_start_page | 714 |
container_title | Engineering in life sciences |
container_volume | 17 |
creator | Kazan, Aslihan Heymuth, Marcel Karabulut, Dilan Akay, Seref Yildiz‐Ozturk, Ece Onbas, Rabia Muderrisoglu, Cahit Sargin, Sayit Heils, Rene Smirnova, Irina Yesil‐Celiktas, Ozlem |
description | The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate–polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β‐glucosidase was loaded into glass–silicon–glass microreactors and catalysis of 4‐nitrophenyl β‐d‐glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms. |
doi_str_mv | 10.1002/elsc.201600218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6999321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420622964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-b78f9a3cdc7536d8c98b5605f62691154da41cd528605970165224c30173f7be3</originalsourceid><addsrcrecordid>eNqFkctOAyEYhYnRWG9b17N008plhoGNiWm8JU1cqGvCANNiYKjQ0dSVj-Cz-CA-hE8iprWJK1fwh3O-P4cDwDGCIwQhPjUuqRGGiOYBsS2whyhiQ8wo2V7fIS7hAOyn9AghqhlDu2BAMMUlQ3QPPF-G6HsnFzZ0RWiLEKeys6qQnS5s9zvNljqGqXGFl4tolUlFG2JhvQ-NdfZ14_78-Hp7n7pehWS1TCYjCm9VDK3rrc6ged6Urf4Q7LTSJXO0Pg_Aw-XF_fh6OLm9uhmfT4aqRIgPm5q1XBKlVV0RqpnirKkorFqKKUeoKrUskdJVzgsrXudvqDAuFclBSVs3hhyAsxV33jfeaGW6RZROzKP1Mi5FkFb8fensTEzDs6Ccc4JRBpysATE89SYthLdJGedkZ0KfBC4xpBhzWmbpaCXNeVOKpt2sQVD8lCV-yhKbsrKBrAwv1pnlP2pxMbkbc8bJN1dJmrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420622964</pqid></control><display><type>article</type><title>Formulation of organic and inorganic hydrogel matrices for immobilization of β‐glucosidase in microfluidic platform</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kazan, Aslihan ; Heymuth, Marcel ; Karabulut, Dilan ; Akay, Seref ; Yildiz‐Ozturk, Ece ; Onbas, Rabia ; Muderrisoglu, Cahit ; Sargin, Sayit ; Heils, Rene ; Smirnova, Irina ; Yesil‐Celiktas, Ozlem</creator><creatorcontrib>Kazan, Aslihan ; Heymuth, Marcel ; Karabulut, Dilan ; Akay, Seref ; Yildiz‐Ozturk, Ece ; Onbas, Rabia ; Muderrisoglu, Cahit ; Sargin, Sayit ; Heils, Rene ; Smirnova, Irina ; Yesil‐Celiktas, Ozlem</creatorcontrib><description>The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate–polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β‐glucosidase was loaded into glass–silicon–glass microreactors and catalysis of 4‐nitrophenyl β‐d‐glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms.</description><identifier>ISSN: 1618-0240</identifier><identifier>EISSN: 1618-2863</identifier><identifier>DOI: 10.1002/elsc.201600218</identifier><identifier>PMID: 32624816</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><subject>Enzyme ; Hydrogels ; Immobilization ; Microreactor</subject><ispartof>Engineering in life sciences, 2017-07, Vol.17 (7), p.714-722</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-b78f9a3cdc7536d8c98b5605f62691154da41cd528605970165224c30173f7be3</citedby><cites>FETCH-LOGICAL-c4119-b78f9a3cdc7536d8c98b5605f62691154da41cd528605970165224c30173f7be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999321/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999321/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids></links><search><creatorcontrib>Kazan, Aslihan</creatorcontrib><creatorcontrib>Heymuth, Marcel</creatorcontrib><creatorcontrib>Karabulut, Dilan</creatorcontrib><creatorcontrib>Akay, Seref</creatorcontrib><creatorcontrib>Yildiz‐Ozturk, Ece</creatorcontrib><creatorcontrib>Onbas, Rabia</creatorcontrib><creatorcontrib>Muderrisoglu, Cahit</creatorcontrib><creatorcontrib>Sargin, Sayit</creatorcontrib><creatorcontrib>Heils, Rene</creatorcontrib><creatorcontrib>Smirnova, Irina</creatorcontrib><creatorcontrib>Yesil‐Celiktas, Ozlem</creatorcontrib><title>Formulation of organic and inorganic hydrogel matrices for immobilization of β‐glucosidase in microfluidic platform</title><title>Engineering in life sciences</title><description>The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate–polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β‐glucosidase was loaded into glass–silicon–glass microreactors and catalysis of 4‐nitrophenyl β‐d‐glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms.</description><subject>Enzyme</subject><subject>Hydrogels</subject><subject>Immobilization</subject><subject>Microreactor</subject><issn>1618-0240</issn><issn>1618-2863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctOAyEYhYnRWG9b17N008plhoGNiWm8JU1cqGvCANNiYKjQ0dSVj-Cz-CA-hE8iprWJK1fwh3O-P4cDwDGCIwQhPjUuqRGGiOYBsS2whyhiQ8wo2V7fIS7hAOyn9AghqhlDu2BAMMUlQ3QPPF-G6HsnFzZ0RWiLEKeys6qQnS5s9zvNljqGqXGFl4tolUlFG2JhvQ-NdfZ14_78-Hp7n7pehWS1TCYjCm9VDK3rrc6ged6Urf4Q7LTSJXO0Pg_Aw-XF_fh6OLm9uhmfT4aqRIgPm5q1XBKlVV0RqpnirKkorFqKKUeoKrUskdJVzgsrXudvqDAuFclBSVs3hhyAsxV33jfeaGW6RZROzKP1Mi5FkFb8fensTEzDs6Ccc4JRBpysATE89SYthLdJGedkZ0KfBC4xpBhzWmbpaCXNeVOKpt2sQVD8lCV-yhKbsrKBrAwv1pnlP2pxMbkbc8bJN1dJmrA</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Kazan, Aslihan</creator><creator>Heymuth, Marcel</creator><creator>Karabulut, Dilan</creator><creator>Akay, Seref</creator><creator>Yildiz‐Ozturk, Ece</creator><creator>Onbas, Rabia</creator><creator>Muderrisoglu, Cahit</creator><creator>Sargin, Sayit</creator><creator>Heils, Rene</creator><creator>Smirnova, Irina</creator><creator>Yesil‐Celiktas, Ozlem</creator><general>John Wiley and Sons Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201707</creationdate><title>Formulation of organic and inorganic hydrogel matrices for immobilization of β‐glucosidase in microfluidic platform</title><author>Kazan, Aslihan ; Heymuth, Marcel ; Karabulut, Dilan ; Akay, Seref ; Yildiz‐Ozturk, Ece ; Onbas, Rabia ; Muderrisoglu, Cahit ; Sargin, Sayit ; Heils, Rene ; Smirnova, Irina ; Yesil‐Celiktas, Ozlem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-b78f9a3cdc7536d8c98b5605f62691154da41cd528605970165224c30173f7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Enzyme</topic><topic>Hydrogels</topic><topic>Immobilization</topic><topic>Microreactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazan, Aslihan</creatorcontrib><creatorcontrib>Heymuth, Marcel</creatorcontrib><creatorcontrib>Karabulut, Dilan</creatorcontrib><creatorcontrib>Akay, Seref</creatorcontrib><creatorcontrib>Yildiz‐Ozturk, Ece</creatorcontrib><creatorcontrib>Onbas, Rabia</creatorcontrib><creatorcontrib>Muderrisoglu, Cahit</creatorcontrib><creatorcontrib>Sargin, Sayit</creatorcontrib><creatorcontrib>Heils, Rene</creatorcontrib><creatorcontrib>Smirnova, Irina</creatorcontrib><creatorcontrib>Yesil‐Celiktas, Ozlem</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Engineering in life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazan, Aslihan</au><au>Heymuth, Marcel</au><au>Karabulut, Dilan</au><au>Akay, Seref</au><au>Yildiz‐Ozturk, Ece</au><au>Onbas, Rabia</au><au>Muderrisoglu, Cahit</au><au>Sargin, Sayit</au><au>Heils, Rene</au><au>Smirnova, Irina</au><au>Yesil‐Celiktas, Ozlem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of organic and inorganic hydrogel matrices for immobilization of β‐glucosidase in microfluidic platform</atitle><jtitle>Engineering in life sciences</jtitle><date>2017-07</date><risdate>2017</risdate><volume>17</volume><issue>7</issue><spage>714</spage><epage>722</epage><pages>714-722</pages><issn>1618-0240</issn><eissn>1618-2863</eissn><abstract>The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate–polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β‐glucosidase was loaded into glass–silicon–glass microreactors and catalysis of 4‐nitrophenyl β‐d‐glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><pmid>32624816</pmid><doi>10.1002/elsc.201600218</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-0240 |
ispartof | Engineering in life sciences, 2017-07, Vol.17 (7), p.714-722 |
issn | 1618-0240 1618-2863 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6999321 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Enzyme Hydrogels Immobilization Microreactor |
title | Formulation of organic and inorganic hydrogel matrices for immobilization of β‐glucosidase in microfluidic platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20organic%20and%20inorganic%20hydrogel%20matrices%20for%20immobilization%20of%20%CE%B2%E2%80%90glucosidase%20in%20microfluidic%20platform&rft.jtitle=Engineering%20in%20life%20sciences&rft.au=Kazan,%20Aslihan&rft.date=2017-07&rft.volume=17&rft.issue=7&rft.spage=714&rft.epage=722&rft.pages=714-722&rft.issn=1618-0240&rft.eissn=1618-2863&rft_id=info:doi/10.1002/elsc.201600218&rft_dat=%3Cproquest_pubme%3E2420622964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420622964&rft_id=info:pmid/32624816&rfr_iscdi=true |