Compromised steady‐state germinal center activity with age in nonhuman primates

Age‐related reductions in vaccine‐induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2020-02, Vol.19 (2), p.e13087-n/a
Hauptverfasser: Shankwitz, Kimberly, Pallikkuth, Suresh, Sirupangi, Tirupataiah, Kirk Kvistad, Daniel, Russel, Kyle Blaine, Pahwa, Rajendra, Gama, Lucio, Koup, Richard A., Pan, Li, Villinger, Francois, Pahwa, Savita, Petrovas, Constantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e13087
container_title Aging cell
container_volume 19
creator Shankwitz, Kimberly
Pallikkuth, Suresh
Sirupangi, Tirupataiah
Kirk Kvistad, Daniel
Russel, Kyle Blaine
Pahwa, Rajendra
Gama, Lucio
Koup, Richard A.
Pan, Li
Villinger, Francois
Pahwa, Savita
Petrovas, Constantinos
description Age‐related reductions in vaccine‐induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with respect to their age. There was a marked reduction in follicular area in old animals. We found significantly lower normalized numbers of follicular PD1hi CD4 T (Tfh) and proliferating (Ki67hi) GC B cells with aging, a profile associated with significantly higher numbers of potential follicular suppressor FoxP3hiLag3hi CD4 T cells. Furthermore, a positive correlation was found between Tfh and follicular CD8 T cells (fCD8) only in young animals. Despite the increased levels of circulating preinflammatory factors in aging, young animals had higher numbers of monocytes and granulocytes in the follicles, a profile negatively associated with numbers of Tfh cells. Multiple regression analysis showed an altered association between GC B cells and other GC immune cell populations in old animals suggesting a differential mechanistic regulation of GC activity in aging. Our data demonstrate defective baseline GC composition in old NHPs and provide an immunological base for further understanding the adaptive humoral responses with respect to aging. Steady‐state germinal center immune reactivity is compromised in aged NHPs. This loss of reactivity is characterized by changes in many GC associated cell populations including Tfh, B cells, and follicular Tregs.
doi_str_mv 10.1111/acel.13087
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707868302</galeid><sourcerecordid>A707868302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5437-3226e3ea94344dfdd52a6e5b65a64e919658bdd2204eac371d7c27378ddbbe753</originalsourceid><addsrcrecordid>eNp9kt9qFDEUxgex2Fq98QEk4I0IuyaTf5MbYVlaFRZE0OuQmZzZTZlJ1mSmZe98hD5jn6SZbt1akSYXCcnvfOfw8RXFG4LnJK-PpoFuTiiu5LPihDDJZkqW4vnhTqrj4mVKFxgTqTB9URxTUjFMVXVSfF-GfhtD7xJYlAYwdnfz-zoNZgC0htg7bzrUgB8gItMM7tINO3Tlhg0ya0DOIx_8ZuyNR9vo-lyVXhVHrekSvL4_T4uf52c_ll9mq2-fvy4Xq1nDGZUzWpYCKBjFKGO2tZaXRgCvBTeCgSJK8Kq2tiwxA9NQSaxsSkllZW1dg-T0tPi0192OdQ92mjGaTt-NEXc6GKcf_3i30etwqYVSQnGSBd7fC8Twa4Q06OxCtrIzHsKYdEmnfoxxldF3_6AXYYzZmkwxwSkmXIgnKcoxyXKMP1Br04F2vg15umZqrRcSy0pUFJeZmv-HyttC75rgoXX5_VHBh31BE0NKEdqDEwTrKSZ6iom-i0mG3_7t3QH9k4sMkD1wldvsnpDSi-XZai96C0-Tx2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465301566</pqid></control><display><type>article</type><title>Compromised steady‐state germinal center activity with age in nonhuman primates</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shankwitz, Kimberly ; Pallikkuth, Suresh ; Sirupangi, Tirupataiah ; Kirk Kvistad, Daniel ; Russel, Kyle Blaine ; Pahwa, Rajendra ; Gama, Lucio ; Koup, Richard A. ; Pan, Li ; Villinger, Francois ; Pahwa, Savita ; Petrovas, Constantinos</creator><creatorcontrib>Shankwitz, Kimberly ; Pallikkuth, Suresh ; Sirupangi, Tirupataiah ; Kirk Kvistad, Daniel ; Russel, Kyle Blaine ; Pahwa, Rajendra ; Gama, Lucio ; Koup, Richard A. ; Pan, Li ; Villinger, Francois ; Pahwa, Savita ; Petrovas, Constantinos</creatorcontrib><description>Age‐related reductions in vaccine‐induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with respect to their age. There was a marked reduction in follicular area in old animals. We found significantly lower normalized numbers of follicular PD1hi CD4 T (Tfh) and proliferating (Ki67hi) GC B cells with aging, a profile associated with significantly higher numbers of potential follicular suppressor FoxP3hiLag3hi CD4 T cells. Furthermore, a positive correlation was found between Tfh and follicular CD8 T cells (fCD8) only in young animals. Despite the increased levels of circulating preinflammatory factors in aging, young animals had higher numbers of monocytes and granulocytes in the follicles, a profile negatively associated with numbers of Tfh cells. Multiple regression analysis showed an altered association between GC B cells and other GC immune cell populations in old animals suggesting a differential mechanistic regulation of GC activity in aging. Our data demonstrate defective baseline GC composition in old NHPs and provide an immunological base for further understanding the adaptive humoral responses with respect to aging. Steady‐state germinal center immune reactivity is compromised in aged NHPs. This loss of reactivity is characterized by changes in many GC associated cell populations including Tfh, B cells, and follicular Tregs.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13087</identifier><identifier>PMID: 31840398</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Aging ; Aging - immunology ; Animals ; Antigens ; Antigens, CD - metabolism ; B cells ; B-Lymphocytes - immunology ; CD4 antigen ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - metabolism ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Flow cytometry ; Follicles ; Forkhead Transcription Factors - metabolism ; Germinal Center - cytology ; Germinal Center - immunology ; Germinal Center - pathology ; Germinal centers ; Granulocytes - metabolism ; Immune system ; Immunity, Humoral ; Inflammation - immunology ; Inflammation - metabolism ; Inflammation - physiopathology ; Leukocytes (granulocytic) ; Listeria ; Lymph Nodes - cytology ; Lymph Nodes - immunology ; Lymph Nodes - physiopathology ; Lymphocyte Activation Gene 3 Protein ; Lymphocytes ; Lymphocytes B ; Lymphocytes T ; Macaca mulatta ; Monocytes ; Monocytes - metabolism ; Multiple regression analysis ; Nanoparticles ; Older people ; Original Paper ; Original Papers ; T cells ; Tfh cells ; Vaccines</subject><ispartof>Aging cell, 2020-02, Vol.19 (2), p.e13087-n/a</ispartof><rights>2019 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5437-3226e3ea94344dfdd52a6e5b65a64e919658bdd2204eac371d7c27378ddbbe753</citedby><cites>FETCH-LOGICAL-c5437-3226e3ea94344dfdd52a6e5b65a64e919658bdd2204eac371d7c27378ddbbe753</cites><orcidid>0000-0002-5067-5810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996951/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996951/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31840398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shankwitz, Kimberly</creatorcontrib><creatorcontrib>Pallikkuth, Suresh</creatorcontrib><creatorcontrib>Sirupangi, Tirupataiah</creatorcontrib><creatorcontrib>Kirk Kvistad, Daniel</creatorcontrib><creatorcontrib>Russel, Kyle Blaine</creatorcontrib><creatorcontrib>Pahwa, Rajendra</creatorcontrib><creatorcontrib>Gama, Lucio</creatorcontrib><creatorcontrib>Koup, Richard A.</creatorcontrib><creatorcontrib>Pan, Li</creatorcontrib><creatorcontrib>Villinger, Francois</creatorcontrib><creatorcontrib>Pahwa, Savita</creatorcontrib><creatorcontrib>Petrovas, Constantinos</creatorcontrib><title>Compromised steady‐state germinal center activity with age in nonhuman primates</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Age‐related reductions in vaccine‐induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with respect to their age. There was a marked reduction in follicular area in old animals. We found significantly lower normalized numbers of follicular PD1hi CD4 T (Tfh) and proliferating (Ki67hi) GC B cells with aging, a profile associated with significantly higher numbers of potential follicular suppressor FoxP3hiLag3hi CD4 T cells. Furthermore, a positive correlation was found between Tfh and follicular CD8 T cells (fCD8) only in young animals. Despite the increased levels of circulating preinflammatory factors in aging, young animals had higher numbers of monocytes and granulocytes in the follicles, a profile negatively associated with numbers of Tfh cells. Multiple regression analysis showed an altered association between GC B cells and other GC immune cell populations in old animals suggesting a differential mechanistic regulation of GC activity in aging. Our data demonstrate defective baseline GC composition in old NHPs and provide an immunological base for further understanding the adaptive humoral responses with respect to aging. Steady‐state germinal center immune reactivity is compromised in aged NHPs. This loss of reactivity is characterized by changes in many GC associated cell populations including Tfh, B cells, and follicular Tregs.</description><subject>Age</subject><subject>Aging</subject><subject>Aging - immunology</subject><subject>Animals</subject><subject>Antigens</subject><subject>Antigens, CD - metabolism</subject><subject>B cells</subject><subject>B-Lymphocytes - immunology</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Flow cytometry</subject><subject>Follicles</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Germinal Center - cytology</subject><subject>Germinal Center - immunology</subject><subject>Germinal Center - pathology</subject><subject>Germinal centers</subject><subject>Granulocytes - metabolism</subject><subject>Immune system</subject><subject>Immunity, Humoral</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - physiopathology</subject><subject>Leukocytes (granulocytic)</subject><subject>Listeria</subject><subject>Lymph Nodes - cytology</subject><subject>Lymph Nodes - immunology</subject><subject>Lymph Nodes - physiopathology</subject><subject>Lymphocyte Activation Gene 3 Protein</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Macaca mulatta</subject><subject>Monocytes</subject><subject>Monocytes - metabolism</subject><subject>Multiple regression analysis</subject><subject>Nanoparticles</subject><subject>Older people</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>T cells</subject><subject>Tfh cells</subject><subject>Vaccines</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kt9qFDEUxgex2Fq98QEk4I0IuyaTf5MbYVlaFRZE0OuQmZzZTZlJ1mSmZe98hD5jn6SZbt1akSYXCcnvfOfw8RXFG4LnJK-PpoFuTiiu5LPihDDJZkqW4vnhTqrj4mVKFxgTqTB9URxTUjFMVXVSfF-GfhtD7xJYlAYwdnfz-zoNZgC0htg7bzrUgB8gItMM7tINO3Tlhg0ya0DOIx_8ZuyNR9vo-lyVXhVHrekSvL4_T4uf52c_ll9mq2-fvy4Xq1nDGZUzWpYCKBjFKGO2tZaXRgCvBTeCgSJK8Kq2tiwxA9NQSaxsSkllZW1dg-T0tPi0192OdQ92mjGaTt-NEXc6GKcf_3i30etwqYVSQnGSBd7fC8Twa4Q06OxCtrIzHsKYdEmnfoxxldF3_6AXYYzZmkwxwSkmXIgnKcoxyXKMP1Br04F2vg15umZqrRcSy0pUFJeZmv-HyttC75rgoXX5_VHBh31BE0NKEdqDEwTrKSZ6iom-i0mG3_7t3QH9k4sMkD1wldvsnpDSi-XZai96C0-Tx2s</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Shankwitz, Kimberly</creator><creator>Pallikkuth, Suresh</creator><creator>Sirupangi, Tirupataiah</creator><creator>Kirk Kvistad, Daniel</creator><creator>Russel, Kyle Blaine</creator><creator>Pahwa, Rajendra</creator><creator>Gama, Lucio</creator><creator>Koup, Richard A.</creator><creator>Pan, Li</creator><creator>Villinger, Francois</creator><creator>Pahwa, Savita</creator><creator>Petrovas, Constantinos</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5067-5810</orcidid></search><sort><creationdate>202002</creationdate><title>Compromised steady‐state germinal center activity with age in nonhuman primates</title><author>Shankwitz, Kimberly ; Pallikkuth, Suresh ; Sirupangi, Tirupataiah ; Kirk Kvistad, Daniel ; Russel, Kyle Blaine ; Pahwa, Rajendra ; Gama, Lucio ; Koup, Richard A. ; Pan, Li ; Villinger, Francois ; Pahwa, Savita ; Petrovas, Constantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5437-3226e3ea94344dfdd52a6e5b65a64e919658bdd2204eac371d7c27378ddbbe753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Aging</topic><topic>Aging - immunology</topic><topic>Animals</topic><topic>Antigens</topic><topic>Antigens, CD - metabolism</topic><topic>B cells</topic><topic>B-Lymphocytes - immunology</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Flow cytometry</topic><topic>Follicles</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Germinal Center - cytology</topic><topic>Germinal Center - immunology</topic><topic>Germinal Center - pathology</topic><topic>Germinal centers</topic><topic>Granulocytes - metabolism</topic><topic>Immune system</topic><topic>Immunity, Humoral</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - physiopathology</topic><topic>Leukocytes (granulocytic)</topic><topic>Listeria</topic><topic>Lymph Nodes - cytology</topic><topic>Lymph Nodes - immunology</topic><topic>Lymph Nodes - physiopathology</topic><topic>Lymphocyte Activation Gene 3 Protein</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Macaca mulatta</topic><topic>Monocytes</topic><topic>Monocytes - metabolism</topic><topic>Multiple regression analysis</topic><topic>Nanoparticles</topic><topic>Older people</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>T cells</topic><topic>Tfh cells</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankwitz, Kimberly</creatorcontrib><creatorcontrib>Pallikkuth, Suresh</creatorcontrib><creatorcontrib>Sirupangi, Tirupataiah</creatorcontrib><creatorcontrib>Kirk Kvistad, Daniel</creatorcontrib><creatorcontrib>Russel, Kyle Blaine</creatorcontrib><creatorcontrib>Pahwa, Rajendra</creatorcontrib><creatorcontrib>Gama, Lucio</creatorcontrib><creatorcontrib>Koup, Richard A.</creatorcontrib><creatorcontrib>Pan, Li</creatorcontrib><creatorcontrib>Villinger, Francois</creatorcontrib><creatorcontrib>Pahwa, Savita</creatorcontrib><creatorcontrib>Petrovas, Constantinos</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankwitz, Kimberly</au><au>Pallikkuth, Suresh</au><au>Sirupangi, Tirupataiah</au><au>Kirk Kvistad, Daniel</au><au>Russel, Kyle Blaine</au><au>Pahwa, Rajendra</au><au>Gama, Lucio</au><au>Koup, Richard A.</au><au>Pan, Li</au><au>Villinger, Francois</au><au>Pahwa, Savita</au><au>Petrovas, Constantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compromised steady‐state germinal center activity with age in nonhuman primates</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2020-02</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>e13087</spage><epage>n/a</epage><pages>e13087-n/a</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Age‐related reductions in vaccine‐induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with respect to their age. There was a marked reduction in follicular area in old animals. We found significantly lower normalized numbers of follicular PD1hi CD4 T (Tfh) and proliferating (Ki67hi) GC B cells with aging, a profile associated with significantly higher numbers of potential follicular suppressor FoxP3hiLag3hi CD4 T cells. Furthermore, a positive correlation was found between Tfh and follicular CD8 T cells (fCD8) only in young animals. Despite the increased levels of circulating preinflammatory factors in aging, young animals had higher numbers of monocytes and granulocytes in the follicles, a profile negatively associated with numbers of Tfh cells. Multiple regression analysis showed an altered association between GC B cells and other GC immune cell populations in old animals suggesting a differential mechanistic regulation of GC activity in aging. Our data demonstrate defective baseline GC composition in old NHPs and provide an immunological base for further understanding the adaptive humoral responses with respect to aging. Steady‐state germinal center immune reactivity is compromised in aged NHPs. This loss of reactivity is characterized by changes in many GC associated cell populations including Tfh, B cells, and follicular Tregs.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31840398</pmid><doi>10.1111/acel.13087</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5067-5810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2020-02, Vol.19 (2), p.e13087-n/a
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996951
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central; Alma/SFX Local Collection
subjects Age
Aging
Aging - immunology
Animals
Antigens
Antigens, CD - metabolism
B cells
B-Lymphocytes - immunology
CD4 antigen
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - metabolism
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Flow cytometry
Follicles
Forkhead Transcription Factors - metabolism
Germinal Center - cytology
Germinal Center - immunology
Germinal Center - pathology
Germinal centers
Granulocytes - metabolism
Immune system
Immunity, Humoral
Inflammation - immunology
Inflammation - metabolism
Inflammation - physiopathology
Leukocytes (granulocytic)
Listeria
Lymph Nodes - cytology
Lymph Nodes - immunology
Lymph Nodes - physiopathology
Lymphocyte Activation Gene 3 Protein
Lymphocytes
Lymphocytes B
Lymphocytes T
Macaca mulatta
Monocytes
Monocytes - metabolism
Multiple regression analysis
Nanoparticles
Older people
Original Paper
Original Papers
T cells
Tfh cells
Vaccines
title Compromised steady‐state germinal center activity with age in nonhuman primates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compromised%20steady%E2%80%90state%20germinal%20center%20activity%20with%20age%20in%20nonhuman%20primates&rft.jtitle=Aging%20cell&rft.au=Shankwitz,%20Kimberly&rft.date=2020-02&rft.volume=19&rft.issue=2&rft.spage=e13087&rft.epage=n/a&rft.pages=e13087-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13087&rft_dat=%3Cgale_pubme%3EA707868302%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465301566&rft_id=info:pmid/31840398&rft_galeid=A707868302&rfr_iscdi=true