Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV

Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-02, Vol.39 (3), p.e102817-n/a
Hauptverfasser: Protasoni, Margherita, Pérez‐Pérez, Rafael, Lobo‐Jarne, Teresa, Harbour, Michael E, Ding, Shujing, Peñas, Ana, Diaz, Francisca, Moraes, Carlos T, Fearnley, Ian M, Zeviani, Massimo, Ugalde, Cristina, Fernández‐Vizarra, Erika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e102817
container_title The EMBO journal
container_volume 39
creator Protasoni, Margherita
Pérez‐Pérez, Rafael
Lobo‐Jarne, Teresa
Harbour, Michael E
Ding, Shujing
Peñas, Ana
Diaz, Francisca
Moraes, Carlos T
Fearnley, Ian M
Zeviani, Massimo
Ugalde, Cristina
Fernández‐Vizarra, Erika
description Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis. Synopsis The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs. Complex III is a master regulator of MRC maturation and SC formation. Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I. Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I. Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies. Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes. Graphical Abstract Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.
doi_str_mv 10.15252/embj.2019102817
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334698588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</originalsourceid><addsrcrecordid>eNqFkUGL1TAUhYMoznN070oCbtx0vEmaJgERdBi1MiKIug1pm87Lo2lq0qoPXPgT_I3-EqPvOc8RxE3u4n7n5FwOQncJnBBOOX1ofbM5oUAUASqJuIZWpKygoCD4dbQCWpGiJFIdoVspbQCAS0FuoiOWBVRRvkJf3tg0uWjmELc4LZONbfDTYD_bhE07Y5MHngYz9yF6nB-83-O6rr9__eZt58xsO-zNvGQbF0YcerxevBmxd3No12HsojMDPhjX2Iwdrt_fRjd6MyR7Zz-P0btnZ29PXxTnr5_Xp0_Oi5YTJYqGEUEFL62p-k71YGTFIF9lKy4U6xjJ58rSMlK2hkslJGugAa46SroKVMmO0eOd77Q0OXBrxzmaQU_ReRO3Ohinr25Gt9YX4aOulMp_0GzwYG8Qw4fFpll7l1o7DGa0YUmaMlZWSnIpM3r_L3QTljjm8zLFAUTuBDIFO6qNIaVo-8swBPSvavXPavWh2iy59-cRl4LfXWbg0Q745Aa7_a-hPnv19OUVf7KTp6wcL2w8BP9nph_bu8K7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350072610</pqid></control><display><type>article</type><title>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</title><source>MEDLINE</source><source>Wiley Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Protasoni, Margherita ; Pérez‐Pérez, Rafael ; Lobo‐Jarne, Teresa ; Harbour, Michael E ; Ding, Shujing ; Peñas, Ana ; Diaz, Francisca ; Moraes, Carlos T ; Fearnley, Ian M ; Zeviani, Massimo ; Ugalde, Cristina ; Fernández‐Vizarra, Erika</creator><creatorcontrib>Protasoni, Margherita ; Pérez‐Pérez, Rafael ; Lobo‐Jarne, Teresa ; Harbour, Michael E ; Ding, Shujing ; Peñas, Ana ; Diaz, Francisca ; Moraes, Carlos T ; Fearnley, Ian M ; Zeviani, Massimo ; Ugalde, Cristina ; Fernández‐Vizarra, Erika</creatorcontrib><description>Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis. Synopsis The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs. Complex III is a master regulator of MRC maturation and SC formation. Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I. Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I. Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies. Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes. Graphical Abstract Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019102817</identifier><identifier>PMID: 31912925</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Assembly ; Biosynthesis ; Cell Line ; Chains ; Coenzyme Q ; complex I ; complex III ; cytochrome b mutation ; Destabilization ; Electron transport chain ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Electron Transport Complex III - genetics ; Electron Transport Complex III - metabolism ; Electron Transport Complex IV - chemistry ; Electron Transport Complex IV - genetics ; Electron Transport Complex IV - metabolism ; EMBO20 ; Energy transduction ; Enzyme Stability ; Enzymes ; Humans ; Maturation ; Mitochondria ; Mitochondria - metabolism ; mitochondrial respiratory chain assembly ; Modules ; Mutation ; NAD - metabolism ; NADH ; Nicotinamide adenine dinucleotide ; Oxidoreductase ; Proteomics - methods ; Structure-function relationships ; supercomplexes</subject><ispartof>The EMBO journal, 2020-02, Vol.39 (3), p.e102817-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</citedby><cites>FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</cites><orcidid>0000-0001-6557-461X ; 0000-0002-1632-438X ; 0000-0002-9742-1877 ; 0000-0001-7726-5873 ; 0000-0002-8077-7092 ; 0000-0002-9067-5508 ; 0000-0002-2469-142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996572/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996572/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Protasoni, Margherita</creatorcontrib><creatorcontrib>Pérez‐Pérez, Rafael</creatorcontrib><creatorcontrib>Lobo‐Jarne, Teresa</creatorcontrib><creatorcontrib>Harbour, Michael E</creatorcontrib><creatorcontrib>Ding, Shujing</creatorcontrib><creatorcontrib>Peñas, Ana</creatorcontrib><creatorcontrib>Diaz, Francisca</creatorcontrib><creatorcontrib>Moraes, Carlos T</creatorcontrib><creatorcontrib>Fearnley, Ian M</creatorcontrib><creatorcontrib>Zeviani, Massimo</creatorcontrib><creatorcontrib>Ugalde, Cristina</creatorcontrib><creatorcontrib>Fernández‐Vizarra, Erika</creatorcontrib><title>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis. Synopsis The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs. Complex III is a master regulator of MRC maturation and SC formation. Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I. Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I. Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies. Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes. Graphical Abstract Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.</description><subject>Assembly</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Chains</subject><subject>Coenzyme Q</subject><subject>complex I</subject><subject>complex III</subject><subject>cytochrome b mutation</subject><subject>Destabilization</subject><subject>Electron transport chain</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Electron Transport Complex III - genetics</subject><subject>Electron Transport Complex III - metabolism</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Electron Transport Complex IV - genetics</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>EMBO20</subject><subject>Energy transduction</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Maturation</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial respiratory chain assembly</subject><subject>Modules</subject><subject>Mutation</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidoreductase</subject><subject>Proteomics - methods</subject><subject>Structure-function relationships</subject><subject>supercomplexes</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUGL1TAUhYMoznN070oCbtx0vEmaJgERdBi1MiKIug1pm87Lo2lq0qoPXPgT_I3-EqPvOc8RxE3u4n7n5FwOQncJnBBOOX1ofbM5oUAUASqJuIZWpKygoCD4dbQCWpGiJFIdoVspbQCAS0FuoiOWBVRRvkJf3tg0uWjmELc4LZONbfDTYD_bhE07Y5MHngYz9yF6nB-83-O6rr9__eZt58xsO-zNvGQbF0YcerxevBmxd3No12HsojMDPhjX2Iwdrt_fRjd6MyR7Zz-P0btnZ29PXxTnr5_Xp0_Oi5YTJYqGEUEFL62p-k71YGTFIF9lKy4U6xjJ58rSMlK2hkslJGugAa46SroKVMmO0eOd77Q0OXBrxzmaQU_ReRO3Ohinr25Gt9YX4aOulMp_0GzwYG8Qw4fFpll7l1o7DGa0YUmaMlZWSnIpM3r_L3QTljjm8zLFAUTuBDIFO6qNIaVo-8swBPSvavXPavWh2iy59-cRl4LfXWbg0Q745Aa7_a-hPnv19OUVf7KTp6wcL2w8BP9nph_bu8K7</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Protasoni, Margherita</creator><creator>Pérez‐Pérez, Rafael</creator><creator>Lobo‐Jarne, Teresa</creator><creator>Harbour, Michael E</creator><creator>Ding, Shujing</creator><creator>Peñas, Ana</creator><creator>Diaz, Francisca</creator><creator>Moraes, Carlos T</creator><creator>Fearnley, Ian M</creator><creator>Zeviani, Massimo</creator><creator>Ugalde, Cristina</creator><creator>Fernández‐Vizarra, Erika</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6557-461X</orcidid><orcidid>https://orcid.org/0000-0002-1632-438X</orcidid><orcidid>https://orcid.org/0000-0002-9742-1877</orcidid><orcidid>https://orcid.org/0000-0001-7726-5873</orcidid><orcidid>https://orcid.org/0000-0002-8077-7092</orcidid><orcidid>https://orcid.org/0000-0002-9067-5508</orcidid><orcidid>https://orcid.org/0000-0002-2469-142X</orcidid></search><sort><creationdate>20200203</creationdate><title>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</title><author>Protasoni, Margherita ; Pérez‐Pérez, Rafael ; Lobo‐Jarne, Teresa ; Harbour, Michael E ; Ding, Shujing ; Peñas, Ana ; Diaz, Francisca ; Moraes, Carlos T ; Fearnley, Ian M ; Zeviani, Massimo ; Ugalde, Cristina ; Fernández‐Vizarra, Erika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Chains</topic><topic>Coenzyme Q</topic><topic>complex I</topic><topic>complex III</topic><topic>cytochrome b mutation</topic><topic>Destabilization</topic><topic>Electron transport chain</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Electron Transport Complex III - genetics</topic><topic>Electron Transport Complex III - metabolism</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Electron Transport Complex IV - genetics</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>EMBO20</topic><topic>Energy transduction</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Maturation</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial respiratory chain assembly</topic><topic>Modules</topic><topic>Mutation</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidoreductase</topic><topic>Proteomics - methods</topic><topic>Structure-function relationships</topic><topic>supercomplexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Protasoni, Margherita</creatorcontrib><creatorcontrib>Pérez‐Pérez, Rafael</creatorcontrib><creatorcontrib>Lobo‐Jarne, Teresa</creatorcontrib><creatorcontrib>Harbour, Michael E</creatorcontrib><creatorcontrib>Ding, Shujing</creatorcontrib><creatorcontrib>Peñas, Ana</creatorcontrib><creatorcontrib>Diaz, Francisca</creatorcontrib><creatorcontrib>Moraes, Carlos T</creatorcontrib><creatorcontrib>Fearnley, Ian M</creatorcontrib><creatorcontrib>Zeviani, Massimo</creatorcontrib><creatorcontrib>Ugalde, Cristina</creatorcontrib><creatorcontrib>Fernández‐Vizarra, Erika</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Protasoni, Margherita</au><au>Pérez‐Pérez, Rafael</au><au>Lobo‐Jarne, Teresa</au><au>Harbour, Michael E</au><au>Ding, Shujing</au><au>Peñas, Ana</au><au>Diaz, Francisca</au><au>Moraes, Carlos T</au><au>Fearnley, Ian M</au><au>Zeviani, Massimo</au><au>Ugalde, Cristina</au><au>Fernández‐Vizarra, Erika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><spage>e102817</spage><epage>n/a</epage><pages>e102817-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis. Synopsis The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs. Complex III is a master regulator of MRC maturation and SC formation. Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I. Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I. Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies. Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes. Graphical Abstract Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31912925</pmid><doi>10.15252/embj.2019102817</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6557-461X</orcidid><orcidid>https://orcid.org/0000-0002-1632-438X</orcidid><orcidid>https://orcid.org/0000-0002-9742-1877</orcidid><orcidid>https://orcid.org/0000-0001-7726-5873</orcidid><orcidid>https://orcid.org/0000-0002-8077-7092</orcidid><orcidid>https://orcid.org/0000-0002-9067-5508</orcidid><orcidid>https://orcid.org/0000-0002-2469-142X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-02, Vol.39 (3), p.e102817-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996572
source MEDLINE; Wiley Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Assembly
Biosynthesis
Cell Line
Chains
Coenzyme Q
complex I
complex III
cytochrome b mutation
Destabilization
Electron transport chain
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
Electron Transport Complex III - genetics
Electron Transport Complex III - metabolism
Electron Transport Complex IV - chemistry
Electron Transport Complex IV - genetics
Electron Transport Complex IV - metabolism
EMBO20
Energy transduction
Enzyme Stability
Enzymes
Humans
Maturation
Mitochondria
Mitochondria - metabolism
mitochondrial respiratory chain assembly
Modules
Mutation
NAD - metabolism
NADH
Nicotinamide adenine dinucleotide
Oxidoreductase
Proteomics - methods
Structure-function relationships
supercomplexes
title Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20supercomplexes%20act%20as%20a%20platform%20for%20complex%20III%E2%80%90mediated%20maturation%20of%20human%20mitochondrial%20complexes%20I%20and%20IV&rft.jtitle=The%20EMBO%20journal&rft.au=Protasoni,%20Margherita&rft.date=2020-02-03&rft.volume=39&rft.issue=3&rft.spage=e102817&rft.epage=n/a&rft.pages=e102817-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019102817&rft_dat=%3Cproquest_pubme%3E2334698588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350072610&rft_id=info:pmid/31912925&rfr_iscdi=true