Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV
Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2020-02, Vol.39 (3), p.e102817-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e102817 |
container_title | The EMBO journal |
container_volume | 39 |
creator | Protasoni, Margherita Pérez‐Pérez, Rafael Lobo‐Jarne, Teresa Harbour, Michael E Ding, Shujing Peñas, Ana Diaz, Francisca Moraes, Carlos T Fearnley, Ian M Zeviani, Massimo Ugalde, Cristina Fernández‐Vizarra, Erika |
description | Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.
Synopsis
The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs.
Complex III is a master regulator of MRC maturation and SC formation.
Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I.
Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I.
Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies.
Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes.
Graphical Abstract
Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes. |
doi_str_mv | 10.15252/embj.2019102817 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334698588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</originalsourceid><addsrcrecordid>eNqFkUGL1TAUhYMoznN070oCbtx0vEmaJgERdBi1MiKIug1pm87Lo2lq0qoPXPgT_I3-EqPvOc8RxE3u4n7n5FwOQncJnBBOOX1ofbM5oUAUASqJuIZWpKygoCD4dbQCWpGiJFIdoVspbQCAS0FuoiOWBVRRvkJf3tg0uWjmELc4LZONbfDTYD_bhE07Y5MHngYz9yF6nB-83-O6rr9__eZt58xsO-zNvGQbF0YcerxevBmxd3No12HsojMDPhjX2Iwdrt_fRjd6MyR7Zz-P0btnZ29PXxTnr5_Xp0_Oi5YTJYqGEUEFL62p-k71YGTFIF9lKy4U6xjJ58rSMlK2hkslJGugAa46SroKVMmO0eOd77Q0OXBrxzmaQU_ReRO3Ohinr25Gt9YX4aOulMp_0GzwYG8Qw4fFpll7l1o7DGa0YUmaMlZWSnIpM3r_L3QTljjm8zLFAUTuBDIFO6qNIaVo-8swBPSvavXPavWh2iy59-cRl4LfXWbg0Q745Aa7_a-hPnv19OUVf7KTp6wcL2w8BP9nph_bu8K7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350072610</pqid></control><display><type>article</type><title>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</title><source>MEDLINE</source><source>Wiley Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Protasoni, Margherita ; Pérez‐Pérez, Rafael ; Lobo‐Jarne, Teresa ; Harbour, Michael E ; Ding, Shujing ; Peñas, Ana ; Diaz, Francisca ; Moraes, Carlos T ; Fearnley, Ian M ; Zeviani, Massimo ; Ugalde, Cristina ; Fernández‐Vizarra, Erika</creator><creatorcontrib>Protasoni, Margherita ; Pérez‐Pérez, Rafael ; Lobo‐Jarne, Teresa ; Harbour, Michael E ; Ding, Shujing ; Peñas, Ana ; Diaz, Francisca ; Moraes, Carlos T ; Fearnley, Ian M ; Zeviani, Massimo ; Ugalde, Cristina ; Fernández‐Vizarra, Erika</creatorcontrib><description>Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.
Synopsis
The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs.
Complex III is a master regulator of MRC maturation and SC formation.
Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I.
Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I.
Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies.
Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes.
Graphical Abstract
Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019102817</identifier><identifier>PMID: 31912925</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Assembly ; Biosynthesis ; Cell Line ; Chains ; Coenzyme Q ; complex I ; complex III ; cytochrome b mutation ; Destabilization ; Electron transport chain ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Electron Transport Complex III - genetics ; Electron Transport Complex III - metabolism ; Electron Transport Complex IV - chemistry ; Electron Transport Complex IV - genetics ; Electron Transport Complex IV - metabolism ; EMBO20 ; Energy transduction ; Enzyme Stability ; Enzymes ; Humans ; Maturation ; Mitochondria ; Mitochondria - metabolism ; mitochondrial respiratory chain assembly ; Modules ; Mutation ; NAD - metabolism ; NADH ; Nicotinamide adenine dinucleotide ; Oxidoreductase ; Proteomics - methods ; Structure-function relationships ; supercomplexes</subject><ispartof>The EMBO journal, 2020-02, Vol.39 (3), p.e102817-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</citedby><cites>FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</cites><orcidid>0000-0001-6557-461X ; 0000-0002-1632-438X ; 0000-0002-9742-1877 ; 0000-0001-7726-5873 ; 0000-0002-8077-7092 ; 0000-0002-9067-5508 ; 0000-0002-2469-142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996572/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996572/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Protasoni, Margherita</creatorcontrib><creatorcontrib>Pérez‐Pérez, Rafael</creatorcontrib><creatorcontrib>Lobo‐Jarne, Teresa</creatorcontrib><creatorcontrib>Harbour, Michael E</creatorcontrib><creatorcontrib>Ding, Shujing</creatorcontrib><creatorcontrib>Peñas, Ana</creatorcontrib><creatorcontrib>Diaz, Francisca</creatorcontrib><creatorcontrib>Moraes, Carlos T</creatorcontrib><creatorcontrib>Fearnley, Ian M</creatorcontrib><creatorcontrib>Zeviani, Massimo</creatorcontrib><creatorcontrib>Ugalde, Cristina</creatorcontrib><creatorcontrib>Fernández‐Vizarra, Erika</creatorcontrib><title>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.
Synopsis
The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs.
Complex III is a master regulator of MRC maturation and SC formation.
Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I.
Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I.
Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies.
Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes.
Graphical Abstract
Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.</description><subject>Assembly</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Chains</subject><subject>Coenzyme Q</subject><subject>complex I</subject><subject>complex III</subject><subject>cytochrome b mutation</subject><subject>Destabilization</subject><subject>Electron transport chain</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Electron Transport Complex III - genetics</subject><subject>Electron Transport Complex III - metabolism</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Electron Transport Complex IV - genetics</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>EMBO20</subject><subject>Energy transduction</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Maturation</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial respiratory chain assembly</subject><subject>Modules</subject><subject>Mutation</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidoreductase</subject><subject>Proteomics - methods</subject><subject>Structure-function relationships</subject><subject>supercomplexes</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUGL1TAUhYMoznN070oCbtx0vEmaJgERdBi1MiKIug1pm87Lo2lq0qoPXPgT_I3-EqPvOc8RxE3u4n7n5FwOQncJnBBOOX1ofbM5oUAUASqJuIZWpKygoCD4dbQCWpGiJFIdoVspbQCAS0FuoiOWBVRRvkJf3tg0uWjmELc4LZONbfDTYD_bhE07Y5MHngYz9yF6nB-83-O6rr9__eZt58xsO-zNvGQbF0YcerxevBmxd3No12HsojMDPhjX2Iwdrt_fRjd6MyR7Zz-P0btnZ29PXxTnr5_Xp0_Oi5YTJYqGEUEFL62p-k71YGTFIF9lKy4U6xjJ58rSMlK2hkslJGugAa46SroKVMmO0eOd77Q0OXBrxzmaQU_ReRO3Ohinr25Gt9YX4aOulMp_0GzwYG8Qw4fFpll7l1o7DGa0YUmaMlZWSnIpM3r_L3QTljjm8zLFAUTuBDIFO6qNIaVo-8swBPSvavXPavWh2iy59-cRl4LfXWbg0Q745Aa7_a-hPnv19OUVf7KTp6wcL2w8BP9nph_bu8K7</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Protasoni, Margherita</creator><creator>Pérez‐Pérez, Rafael</creator><creator>Lobo‐Jarne, Teresa</creator><creator>Harbour, Michael E</creator><creator>Ding, Shujing</creator><creator>Peñas, Ana</creator><creator>Diaz, Francisca</creator><creator>Moraes, Carlos T</creator><creator>Fearnley, Ian M</creator><creator>Zeviani, Massimo</creator><creator>Ugalde, Cristina</creator><creator>Fernández‐Vizarra, Erika</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6557-461X</orcidid><orcidid>https://orcid.org/0000-0002-1632-438X</orcidid><orcidid>https://orcid.org/0000-0002-9742-1877</orcidid><orcidid>https://orcid.org/0000-0001-7726-5873</orcidid><orcidid>https://orcid.org/0000-0002-8077-7092</orcidid><orcidid>https://orcid.org/0000-0002-9067-5508</orcidid><orcidid>https://orcid.org/0000-0002-2469-142X</orcidid></search><sort><creationdate>20200203</creationdate><title>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</title><author>Protasoni, Margherita ; Pérez‐Pérez, Rafael ; Lobo‐Jarne, Teresa ; Harbour, Michael E ; Ding, Shujing ; Peñas, Ana ; Diaz, Francisca ; Moraes, Carlos T ; Fearnley, Ian M ; Zeviani, Massimo ; Ugalde, Cristina ; Fernández‐Vizarra, Erika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5197-b3172754ea6fd9f0a8630189e65793d3120784e314ca589783b0b059d21d60943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Chains</topic><topic>Coenzyme Q</topic><topic>complex I</topic><topic>complex III</topic><topic>cytochrome b mutation</topic><topic>Destabilization</topic><topic>Electron transport chain</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Electron Transport Complex III - genetics</topic><topic>Electron Transport Complex III - metabolism</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Electron Transport Complex IV - genetics</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>EMBO20</topic><topic>Energy transduction</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Maturation</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial respiratory chain assembly</topic><topic>Modules</topic><topic>Mutation</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidoreductase</topic><topic>Proteomics - methods</topic><topic>Structure-function relationships</topic><topic>supercomplexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Protasoni, Margherita</creatorcontrib><creatorcontrib>Pérez‐Pérez, Rafael</creatorcontrib><creatorcontrib>Lobo‐Jarne, Teresa</creatorcontrib><creatorcontrib>Harbour, Michael E</creatorcontrib><creatorcontrib>Ding, Shujing</creatorcontrib><creatorcontrib>Peñas, Ana</creatorcontrib><creatorcontrib>Diaz, Francisca</creatorcontrib><creatorcontrib>Moraes, Carlos T</creatorcontrib><creatorcontrib>Fearnley, Ian M</creatorcontrib><creatorcontrib>Zeviani, Massimo</creatorcontrib><creatorcontrib>Ugalde, Cristina</creatorcontrib><creatorcontrib>Fernández‐Vizarra, Erika</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Protasoni, Margherita</au><au>Pérez‐Pérez, Rafael</au><au>Lobo‐Jarne, Teresa</au><au>Harbour, Michael E</au><au>Ding, Shujing</au><au>Peñas, Ana</au><au>Diaz, Francisca</au><au>Moraes, Carlos T</au><au>Fearnley, Ian M</au><au>Zeviani, Massimo</au><au>Ugalde, Cristina</au><au>Fernández‐Vizarra, Erika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><spage>e102817</spage><epage>n/a</epage><pages>e102817-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT‐CYB‐deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre‐formation of fully assembled individual complexes. In contrast, they support a cooperative‐assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.
Synopsis
The mitochondrial respiratory chain (MRC), necessary for aerobic cellular energy transduction in eukaryotic cells, consists of five large enzyme complexes that can assemble into larger supramolecular structures called supercomplexes (SCs). Biogenesis of the human MRC requires the cooperative and interdependent action of respiratory SCs.
Complex III is a master regulator of MRC maturation and SC formation.
Lack of respiratory complex III halts the assembly of complex I by preventing the incorporation of the NADH‐module, but it does not induce the degradation of fully assembled complex I.
Coenzyme Q and oxidoreductase activity of complex III are required for the maturation of complex I.
Mis‐assembly of complex III affects the biogenesis of complex IV as it causes the sequestration of unassembled complex IV subunits into complex III preassemblies.
Complex I, III and IV assemble in a cooperative way, interacting with each other prior to the formation of the individual complexes.
Graphical Abstract
Biogenesis of the human mitochondrial respiratory chain requires the cooperative and interdependent action of respiratory supercomplexes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31912925</pmid><doi>10.15252/embj.2019102817</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6557-461X</orcidid><orcidid>https://orcid.org/0000-0002-1632-438X</orcidid><orcidid>https://orcid.org/0000-0002-9742-1877</orcidid><orcidid>https://orcid.org/0000-0001-7726-5873</orcidid><orcidid>https://orcid.org/0000-0002-8077-7092</orcidid><orcidid>https://orcid.org/0000-0002-9067-5508</orcidid><orcidid>https://orcid.org/0000-0002-2469-142X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2020-02, Vol.39 (3), p.e102817-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996572 |
source | MEDLINE; Wiley Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Assembly Biosynthesis Cell Line Chains Coenzyme Q complex I complex III cytochrome b mutation Destabilization Electron transport chain Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Electron Transport Complex III - genetics Electron Transport Complex III - metabolism Electron Transport Complex IV - chemistry Electron Transport Complex IV - genetics Electron Transport Complex IV - metabolism EMBO20 Energy transduction Enzyme Stability Enzymes Humans Maturation Mitochondria Mitochondria - metabolism mitochondrial respiratory chain assembly Modules Mutation NAD - metabolism NADH Nicotinamide adenine dinucleotide Oxidoreductase Proteomics - methods Structure-function relationships supercomplexes |
title | Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20supercomplexes%20act%20as%20a%20platform%20for%20complex%20III%E2%80%90mediated%20maturation%20of%20human%20mitochondrial%20complexes%20I%20and%20IV&rft.jtitle=The%20EMBO%20journal&rft.au=Protasoni,%20Margherita&rft.date=2020-02-03&rft.volume=39&rft.issue=3&rft.spage=e102817&rft.epage=n/a&rft.pages=e102817-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019102817&rft_dat=%3Cproquest_pubme%3E2334698588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350072610&rft_id=info:pmid/31912925&rfr_iscdi=true |