Resting state structure of the hyperdepolarization activated two-pore channel 3
Voltage-gated ion channels endow membranes with excitability and the means to propagate action potentials that form the basis of all neuronal signaling. We determined the structure of a voltage-gated sodium channel, two-pore channel 3 (TPC3), which generates ultralong action potentials. TPC3 is dist...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-01, Vol.117 (4), p.1988-1993 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1993 |
---|---|
container_issue | 4 |
container_start_page | 1988 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Dickinson, Miles Sasha Myasnikov, Alexander Eriksen, Jacob Poweleit, Nicole Stroud, Robert M. |
description | Voltage-gated ion channels endow membranes with excitability and the means to propagate action potentials that form the basis of all neuronal signaling. We determined the structure of a voltage-gated sodium channel, two-pore channel 3 (TPC3), which generates ultralong action potentials. TPC3 is distinguished by activation only at extreme membrane depolarization (V50 ∼ +75 mV), in contrast to other TPCs and NaV channels that activate between −20 and 0 mV. We present electrophysiological evidence that TPC3 voltage activation depends only on voltage sensing domain 2 (VSD2) and that each of the three gating arginines in VSD2 reduces the activation threshold. The structure presents a chemical basis for sodium selectivity, and a constricted gate suggests a closed pore consistent with extreme voltage dependence. The structure, confirmed by our electrophysiology, illustrates the configuration of a bona fide resting state voltage sensor, observed without the need for any inhibitory ligand, and independent of any chemical or mutagenic alteration. |
doi_str_mv | 10.1073/pnas.1915144117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6995003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897795</jstor_id><sourcerecordid>26897795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-dfbedef36aa678cca0266652a663a4aa60333329ec6288cb87af8e3568bfc9e33</originalsourceid><addsrcrecordid>eNpVkc1LAzEQxYMotn6cPSkLnrdOkk02uQgifkFBED2HNJttt7SbNclW9K83pbXqHDKQ-eVleA-hMwwjDCW96lodRlhihosC43IPDTFInPNCwj4aApAyFwUpBugohDkASCbgEA0olqQoCz5Ezy82xKadZiHqaNPpexN7bzNXZ3Fms9lnZ31lO7fQvvnSsXFtpk1sVomusvjh8s4l2sx029pFRk_QQa0XwZ5u-zF6u797vX3Mx88PT7c349wwkDGv6omtbE251rwUxmggnHNGNOdUF-kSaCoireFECDMRpa6FpYyLSW2kpfQYXW90u36ytJWxbfR6oTrfLLX_VE436v-kbWZq6laKS8kA1gKXWwHv3vtkgpq73rdpZ0UoA0yIZDhRVxvKeBeCt_XuBwxqnYBaJ6B-E0gvLv4utuN_LE_A-QaYh-j8bk64kGUpGf0GqQSODg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350122951</pqid></control><display><type>article</type><title>Resting state structure of the hyperdepolarization activated two-pore channel 3</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dickinson, Miles Sasha ; Myasnikov, Alexander ; Eriksen, Jacob ; Poweleit, Nicole ; Stroud, Robert M.</creator><creatorcontrib>Dickinson, Miles Sasha ; Myasnikov, Alexander ; Eriksen, Jacob ; Poweleit, Nicole ; Stroud, Robert M.</creatorcontrib><description>Voltage-gated ion channels endow membranes with excitability and the means to propagate action potentials that form the basis of all neuronal signaling. We determined the structure of a voltage-gated sodium channel, two-pore channel 3 (TPC3), which generates ultralong action potentials. TPC3 is distinguished by activation only at extreme membrane depolarization (V50 ∼ +75 mV), in contrast to other TPCs and NaV channels that activate between −20 and 0 mV. We present electrophysiological evidence that TPC3 voltage activation depends only on voltage sensing domain 2 (VSD2) and that each of the three gating arginines in VSD2 reduces the activation threshold. The structure presents a chemical basis for sodium selectivity, and a constricted gate suggests a closed pore consistent with extreme voltage dependence. The structure, confirmed by our electrophysiology, illustrates the configuration of a bona fide resting state voltage sensor, observed without the need for any inhibitory ligand, and independent of any chemical or mutagenic alteration.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1915144117</identifier><identifier>PMID: 31924746</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials ; Activation ; Biological Sciences ; Channel gating ; Cryoelectron Microscopy ; Depolarization ; Electrophysiology ; Excitability ; HEK293 Cells ; Humans ; Ion Channel Gating - physiology ; Ion channels ; Ions ; Membrane potential ; Membranes ; Models, Molecular ; Organic chemistry ; Potassium ; Protein Conformation ; Selectivity ; Sodium ; Sodium - metabolism ; Sodium channels (voltage-gated)</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (4), p.1988-1993</ispartof><rights>Copyright National Academy of Sciences Jan 28, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-dfbedef36aa678cca0266652a663a4aa60333329ec6288cb87af8e3568bfc9e33</citedby><cites>FETCH-LOGICAL-c509t-dfbedef36aa678cca0266652a663a4aa60333329ec6288cb87af8e3568bfc9e33</cites><orcidid>0000-0002-8016-1570 ; 0000-0003-2083-5665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897795$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897795$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31924746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickinson, Miles Sasha</creatorcontrib><creatorcontrib>Myasnikov, Alexander</creatorcontrib><creatorcontrib>Eriksen, Jacob</creatorcontrib><creatorcontrib>Poweleit, Nicole</creatorcontrib><creatorcontrib>Stroud, Robert M.</creatorcontrib><title>Resting state structure of the hyperdepolarization activated two-pore channel 3</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Voltage-gated ion channels endow membranes with excitability and the means to propagate action potentials that form the basis of all neuronal signaling. We determined the structure of a voltage-gated sodium channel, two-pore channel 3 (TPC3), which generates ultralong action potentials. TPC3 is distinguished by activation only at extreme membrane depolarization (V50 ∼ +75 mV), in contrast to other TPCs and NaV channels that activate between −20 and 0 mV. We present electrophysiological evidence that TPC3 voltage activation depends only on voltage sensing domain 2 (VSD2) and that each of the three gating arginines in VSD2 reduces the activation threshold. The structure presents a chemical basis for sodium selectivity, and a constricted gate suggests a closed pore consistent with extreme voltage dependence. The structure, confirmed by our electrophysiology, illustrates the configuration of a bona fide resting state voltage sensor, observed without the need for any inhibitory ligand, and independent of any chemical or mutagenic alteration.</description><subject>Action Potentials</subject><subject>Activation</subject><subject>Biological Sciences</subject><subject>Channel gating</subject><subject>Cryoelectron Microscopy</subject><subject>Depolarization</subject><subject>Electrophysiology</subject><subject>Excitability</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Organic chemistry</subject><subject>Potassium</subject><subject>Protein Conformation</subject><subject>Selectivity</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium channels (voltage-gated)</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LAzEQxYMotn6cPSkLnrdOkk02uQgifkFBED2HNJttt7SbNclW9K83pbXqHDKQ-eVleA-hMwwjDCW96lodRlhihosC43IPDTFInPNCwj4aApAyFwUpBugohDkASCbgEA0olqQoCz5Ezy82xKadZiHqaNPpexN7bzNXZ3Fms9lnZ31lO7fQvvnSsXFtpk1sVomusvjh8s4l2sx029pFRk_QQa0XwZ5u-zF6u797vX3Mx88PT7c349wwkDGv6omtbE251rwUxmggnHNGNOdUF-kSaCoireFECDMRpa6FpYyLSW2kpfQYXW90u36ytJWxbfR6oTrfLLX_VE436v-kbWZq6laKS8kA1gKXWwHv3vtkgpq73rdpZ0UoA0yIZDhRVxvKeBeCt_XuBwxqnYBaJ6B-E0gvLv4utuN_LE_A-QaYh-j8bk64kGUpGf0GqQSODg</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Dickinson, Miles Sasha</creator><creator>Myasnikov, Alexander</creator><creator>Eriksen, Jacob</creator><creator>Poweleit, Nicole</creator><creator>Stroud, Robert M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8016-1570</orcidid><orcidid>https://orcid.org/0000-0003-2083-5665</orcidid></search><sort><creationdate>20200128</creationdate><title>Resting state structure of the hyperdepolarization activated two-pore channel 3</title><author>Dickinson, Miles Sasha ; Myasnikov, Alexander ; Eriksen, Jacob ; Poweleit, Nicole ; Stroud, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-dfbedef36aa678cca0266652a663a4aa60333329ec6288cb87af8e3568bfc9e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action Potentials</topic><topic>Activation</topic><topic>Biological Sciences</topic><topic>Channel gating</topic><topic>Cryoelectron Microscopy</topic><topic>Depolarization</topic><topic>Electrophysiology</topic><topic>Excitability</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Organic chemistry</topic><topic>Potassium</topic><topic>Protein Conformation</topic><topic>Selectivity</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium channels (voltage-gated)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickinson, Miles Sasha</creatorcontrib><creatorcontrib>Myasnikov, Alexander</creatorcontrib><creatorcontrib>Eriksen, Jacob</creatorcontrib><creatorcontrib>Poweleit, Nicole</creatorcontrib><creatorcontrib>Stroud, Robert M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickinson, Miles Sasha</au><au>Myasnikov, Alexander</au><au>Eriksen, Jacob</au><au>Poweleit, Nicole</au><au>Stroud, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting state structure of the hyperdepolarization activated two-pore channel 3</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>117</volume><issue>4</issue><spage>1988</spage><epage>1993</epage><pages>1988-1993</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Voltage-gated ion channels endow membranes with excitability and the means to propagate action potentials that form the basis of all neuronal signaling. We determined the structure of a voltage-gated sodium channel, two-pore channel 3 (TPC3), which generates ultralong action potentials. TPC3 is distinguished by activation only at extreme membrane depolarization (V50 ∼ +75 mV), in contrast to other TPCs and NaV channels that activate between −20 and 0 mV. We present electrophysiological evidence that TPC3 voltage activation depends only on voltage sensing domain 2 (VSD2) and that each of the three gating arginines in VSD2 reduces the activation threshold. The structure presents a chemical basis for sodium selectivity, and a constricted gate suggests a closed pore consistent with extreme voltage dependence. The structure, confirmed by our electrophysiology, illustrates the configuration of a bona fide resting state voltage sensor, observed without the need for any inhibitory ligand, and independent of any chemical or mutagenic alteration.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31924746</pmid><doi>10.1073/pnas.1915144117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8016-1570</orcidid><orcidid>https://orcid.org/0000-0003-2083-5665</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (4), p.1988-1993 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6995003 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Action Potentials Activation Biological Sciences Channel gating Cryoelectron Microscopy Depolarization Electrophysiology Excitability HEK293 Cells Humans Ion Channel Gating - physiology Ion channels Ions Membrane potential Membranes Models, Molecular Organic chemistry Potassium Protein Conformation Selectivity Sodium Sodium - metabolism Sodium channels (voltage-gated) |
title | Resting state structure of the hyperdepolarization activated two-pore channel 3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%20state%20structure%20of%20the%20hyperdepolarization%20activated%20two-pore%20channel%203&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dickinson,%20Miles%20Sasha&rft.date=2020-01-28&rft.volume=117&rft.issue=4&rft.spage=1988&rft.epage=1993&rft.pages=1988-1993&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1915144117&rft_dat=%3Cjstor_pubme%3E26897795%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350122951&rft_id=info:pmid/31924746&rft_jstor_id=26897795&rfr_iscdi=true |