Model Predictive Control for Finite Input Systems using the D-Wave Quantum Annealer

The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest, but there have been only a few practical algorithms exploiting the power of quantum annealers. Here we present a model predictive control (MPC) algorithm using a quantum annealer fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.1591, Article 1591
Hauptverfasser: Inoue, Daisuke, Yoshida, Hiroaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1591
container_title Scientific reports
container_volume 10
creator Inoue, Daisuke
Yoshida, Hiroaki
description The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest, but there have been only a few practical algorithms exploiting the power of quantum annealers. Here we present a model predictive control (MPC) algorithm using a quantum annealer for a system allowing a finite number of input values. Such an MPC problem is classified as a non-deterministic polynomial-time-hard combinatorial problem, and thus real-time sequential optimization is difficult to obtain with conventional computational systems. We circumvent this difficulty by converting the original MPC problem into a quadratic unconstrained binary optimization problem, which is then solved by the D-Wave quantum annealer. Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated. For both, the D-Wave method exhibits better performance than the classical simulated annealing method. Our results suggest new applications of quantum annealers in the direction of dynamic control problems.
doi_str_mv 10.1038/s41598-020-58081-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349174881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-3e87c199ed37d6066e4c36c257d25644dbfb38e806f6a5ac61f5bb02816756913</originalsourceid><addsrcrecordid>eNp9UU1LHDEYDqXSFfUPeCiBnsfme5JLYdlqKygqtngMmZl31llmk22SEfz3xq5u9dJckpf3-SIPQseUnFDC9dckqDS6IoxUUhNNK_MB7TMiZMU4Yx_fvGfoKKUVKUcyI6j5hGaclUFLvY9uL0MHI76O0A1tHh4AL4LPMYy4DxGfDX7IgM_9Zsr49jFlWCc8pcEvcb4H_L26c4VxMzmfpzWeew9uhHiI9no3Jjh6uQ_Q77PTX4uf1cXVj_PF_KJqhaC54qDrlhoDHa87RZQC0XLVMll3TCohuqZvuAZNVK-cdK2ivWwawjRVtVSG8gP0bau7mZo1dC2U4G60mzisXXy0wQ32_cYP93YZHqwyRqhaF4EvLwIx_JkgZbsKU_Qls2VcGFoLrZ9t2BbVxpBShH7nQIl97sJuu7ClC_u3C2sK6fPbbDvK688XAN8CUln5JcR_3v-RfQJqS5SE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349174881</pqid></control><display><type>article</type><title>Model Predictive Control for Finite Input Systems using the D-Wave Quantum Annealer</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Inoue, Daisuke ; Yoshida, Hiroaki</creator><creatorcontrib>Inoue, Daisuke ; Yoshida, Hiroaki</creatorcontrib><description>The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest, but there have been only a few practical algorithms exploiting the power of quantum annealers. Here we present a model predictive control (MPC) algorithm using a quantum annealer for a system allowing a finite number of input values. Such an MPC problem is classified as a non-deterministic polynomial-time-hard combinatorial problem, and thus real-time sequential optimization is difficult to obtain with conventional computational systems. We circumvent this difficulty by converting the original MPC problem into a quadratic unconstrained binary optimization problem, which is then solved by the D-Wave quantum annealer. Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated. For both, the D-Wave method exhibits better performance than the classical simulated annealing method. Our results suggest new applications of quantum annealers in the direction of dynamic control problems.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-58081-9</identifier><identifier>PMID: 32005858</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/166/988 ; 639/766/259 ; 639/766/483/481 ; Algorithms ; Approximation ; Computer applications ; Control algorithms ; Design ; Humanities and Social Sciences ; Methods ; multidisciplinary ; Optimization ; Performance evaluation ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.1591, Article 1591</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-3e87c199ed37d6066e4c36c257d25644dbfb38e806f6a5ac61f5bb02816756913</citedby><cites>FETCH-LOGICAL-c441t-3e87c199ed37d6066e4c36c257d25644dbfb38e806f6a5ac61f5bb02816756913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32005858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inoue, Daisuke</creatorcontrib><creatorcontrib>Yoshida, Hiroaki</creatorcontrib><title>Model Predictive Control for Finite Input Systems using the D-Wave Quantum Annealer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest, but there have been only a few practical algorithms exploiting the power of quantum annealers. Here we present a model predictive control (MPC) algorithm using a quantum annealer for a system allowing a finite number of input values. Such an MPC problem is classified as a non-deterministic polynomial-time-hard combinatorial problem, and thus real-time sequential optimization is difficult to obtain with conventional computational systems. We circumvent this difficulty by converting the original MPC problem into a quadratic unconstrained binary optimization problem, which is then solved by the D-Wave quantum annealer. Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated. For both, the D-Wave method exhibits better performance than the classical simulated annealing method. Our results suggest new applications of quantum annealers in the direction of dynamic control problems.</description><subject>639/166/987</subject><subject>639/166/988</subject><subject>639/766/259</subject><subject>639/766/483/481</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer applications</subject><subject>Control algorithms</subject><subject>Design</subject><subject>Humanities and Social Sciences</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1LHDEYDqXSFfUPeCiBnsfme5JLYdlqKygqtngMmZl31llmk22SEfz3xq5u9dJckpf3-SIPQseUnFDC9dckqDS6IoxUUhNNK_MB7TMiZMU4Yx_fvGfoKKUVKUcyI6j5hGaclUFLvY9uL0MHI76O0A1tHh4AL4LPMYy4DxGfDX7IgM_9Zsr49jFlWCc8pcEvcb4H_L26c4VxMzmfpzWeew9uhHiI9no3Jjh6uQ_Q77PTX4uf1cXVj_PF_KJqhaC54qDrlhoDHa87RZQC0XLVMll3TCohuqZvuAZNVK-cdK2ivWwawjRVtVSG8gP0bau7mZo1dC2U4G60mzisXXy0wQ32_cYP93YZHqwyRqhaF4EvLwIx_JkgZbsKU_Qls2VcGFoLrZ9t2BbVxpBShH7nQIl97sJuu7ClC_u3C2sK6fPbbDvK688XAN8CUln5JcR_3v-RfQJqS5SE</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Inoue, Daisuke</creator><creator>Yoshida, Hiroaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200131</creationdate><title>Model Predictive Control for Finite Input Systems using the D-Wave Quantum Annealer</title><author>Inoue, Daisuke ; Yoshida, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-3e87c199ed37d6066e4c36c257d25644dbfb38e806f6a5ac61f5bb02816756913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/987</topic><topic>639/166/988</topic><topic>639/766/259</topic><topic>639/766/483/481</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer applications</topic><topic>Control algorithms</topic><topic>Design</topic><topic>Humanities and Social Sciences</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inoue, Daisuke</creatorcontrib><creatorcontrib>Yoshida, Hiroaki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoue, Daisuke</au><au>Yoshida, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Predictive Control for Finite Input Systems using the D-Wave Quantum Annealer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-31</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>1591</spage><pages>1591-</pages><artnum>1591</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest, but there have been only a few practical algorithms exploiting the power of quantum annealers. Here we present a model predictive control (MPC) algorithm using a quantum annealer for a system allowing a finite number of input values. Such an MPC problem is classified as a non-deterministic polynomial-time-hard combinatorial problem, and thus real-time sequential optimization is difficult to obtain with conventional computational systems. We circumvent this difficulty by converting the original MPC problem into a quadratic unconstrained binary optimization problem, which is then solved by the D-Wave quantum annealer. Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated. For both, the D-Wave method exhibits better performance than the classical simulated annealing method. Our results suggest new applications of quantum annealers in the direction of dynamic control problems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32005858</pmid><doi>10.1038/s41598-020-58081-9</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-01, Vol.10 (1), p.1591, Article 1591
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994678
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/166/987
639/166/988
639/766/259
639/766/483/481
Algorithms
Approximation
Computer applications
Control algorithms
Design
Humanities and Social Sciences
Methods
multidisciplinary
Optimization
Performance evaluation
Science
Science (multidisciplinary)
title Model Predictive Control for Finite Input Systems using the D-Wave Quantum Annealer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Predictive%20Control%20for%20Finite%20Input%20Systems%20using%20the%20D-Wave%20Quantum%20Annealer&rft.jtitle=Scientific%20reports&rft.au=Inoue,%20Daisuke&rft.date=2020-01-31&rft.volume=10&rft.issue=1&rft.spage=1591&rft.pages=1591-&rft.artnum=1591&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-58081-9&rft_dat=%3Cproquest_pubme%3E2349174881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349174881&rft_id=info:pmid/32005858&rfr_iscdi=true