Nanoparticle-based Cell Trackers for Biomedical Applications

The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2020-01, Vol.10 (4), p.1923-1947
Hauptverfasser: Ni, Jen-Shyang, Li, Yaxi, Yue, Wentong, Liu, Bin, Li, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1947
container_issue 4
container_start_page 1923
container_title Theranostics
container_volume 10
creator Ni, Jen-Shyang
Li, Yaxi
Yue, Wentong
Liu, Bin
Li, Kai
description The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.
doi_str_mv 10.7150/thno.39915
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6993224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598255387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f728d02f03840ed4d637dd94af743d27d0a019ca96c125e7ed7396dd684fb7193</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMottRu_AEy4E6YmuckARFq8QVFN3Ud0iRjp04nYzIV_PemtpZ6N_fA_Tj3cAA4R3DEEYPX3aLxIyIlYkegjwQROS8oPD7QPTCMcQnTUIglkqegRzCkmFDWBzcvuvGtDl1lapfPdXQ2m7i6zmZBmw8XYlb6kN1VfuVsZXSdjdu2TqKrfBPPwEmp6-iGuz0Abw_3s8lTPn19fJ6Mp7mhsOjykmNhIS4hERQ6S21BuLWS6pJTYjG3UEMkjZaFQZg57iwnsrC2ELSccyTJANxufdv1POUwrumCrlUbqpUO38rrSv2_NNVCvfsvVUhJMKbJ4HJnEPzn2sVOLf06NCmzwkwKzBgRPFFXW8oEH2Nw5f4DgmpTttqUrX7LTvDFYaY9-lct-QHwiXq5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598255387</pqid></control><display><type>article</type><title>Nanoparticle-based Cell Trackers for Biomedical Applications</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ni, Jen-Shyang ; Li, Yaxi ; Yue, Wentong ; Liu, Bin ; Li, Kai</creator><creatorcontrib>Ni, Jen-Shyang ; Li, Yaxi ; Yue, Wentong ; Liu, Bin ; Li, Kai</creatorcontrib><description>The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.39915</identifier><identifier>PMID: 32042345</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Animals ; Biocompatibility ; Bioluminescence ; Breast cancer ; Carbon ; Cartilage ; Catheters ; Cell Tracking - methods ; Cell Tracking - trends ; Clinical trials ; Contrast agents ; Contrast Media - chemistry ; Contrast Media - therapeutic use ; Efficiency ; Gastric cancer ; Gene expression ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical research ; Molecular Probes - chemistry ; Molecular Probes - therapeutic use ; Nanodiamonds - chemistry ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Optical Imaging - methods ; Pancreatic cancer ; Photoacoustic Techniques - methods ; Photochemotherapy - methods ; Photothermal Therapy - methods ; Quantum dots ; Quantum Dots - chemistry ; Quantum Dots - therapeutic use ; Review ; Silver ; Stem cells ; Theranostic Nanomedicine - methods ; Theranostic Nanomedicine - trends ; Transplants &amp; implants</subject><ispartof>Theranostics, 2020-01, Vol.10 (4), p.1923-1947</ispartof><rights>The author(s).</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f728d02f03840ed4d637dd94af743d27d0a019ca96c125e7ed7396dd684fb7193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,727,780,784,792,885,27922,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32042345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Jen-Shyang</creatorcontrib><creatorcontrib>Li, Yaxi</creatorcontrib><creatorcontrib>Yue, Wentong</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><title>Nanoparticle-based Cell Trackers for Biomedical Applications</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Bioluminescence</subject><subject>Breast cancer</subject><subject>Carbon</subject><subject>Cartilage</subject><subject>Catheters</subject><subject>Cell Tracking - methods</subject><subject>Cell Tracking - trends</subject><subject>Clinical trials</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - therapeutic use</subject><subject>Efficiency</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical research</subject><subject>Molecular Probes - chemistry</subject><subject>Molecular Probes - therapeutic use</subject><subject>Nanodiamonds - chemistry</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Optical Imaging - methods</subject><subject>Pancreatic cancer</subject><subject>Photoacoustic Techniques - methods</subject><subject>Photochemotherapy - methods</subject><subject>Photothermal Therapy - methods</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Quantum Dots - therapeutic use</subject><subject>Review</subject><subject>Silver</subject><subject>Stem cells</subject><subject>Theranostic Nanomedicine - methods</subject><subject>Theranostic Nanomedicine - trends</subject><subject>Transplants &amp; implants</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEtLAzEUhYMottRu_AEy4E6YmuckARFq8QVFN3Ud0iRjp04nYzIV_PemtpZ6N_fA_Tj3cAA4R3DEEYPX3aLxIyIlYkegjwQROS8oPD7QPTCMcQnTUIglkqegRzCkmFDWBzcvuvGtDl1lapfPdXQ2m7i6zmZBmw8XYlb6kN1VfuVsZXSdjdu2TqKrfBPPwEmp6-iGuz0Abw_3s8lTPn19fJ6Mp7mhsOjykmNhIS4hERQ6S21BuLWS6pJTYjG3UEMkjZaFQZg57iwnsrC2ELSccyTJANxufdv1POUwrumCrlUbqpUO38rrSv2_NNVCvfsvVUhJMKbJ4HJnEPzn2sVOLf06NCmzwkwKzBgRPFFXW8oEH2Nw5f4DgmpTttqUrX7LTvDFYaY9-lct-QHwiXq5</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ni, Jen-Shyang</creator><creator>Li, Yaxi</creator><creator>Yue, Wentong</creator><creator>Liu, Bin</creator><creator>Li, Kai</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Nanoparticle-based Cell Trackers for Biomedical Applications</title><author>Ni, Jen-Shyang ; Li, Yaxi ; Yue, Wentong ; Liu, Bin ; Li, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f728d02f03840ed4d637dd94af743d27d0a019ca96c125e7ed7396dd684fb7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Bioluminescence</topic><topic>Breast cancer</topic><topic>Carbon</topic><topic>Cartilage</topic><topic>Catheters</topic><topic>Cell Tracking - methods</topic><topic>Cell Tracking - trends</topic><topic>Clinical trials</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - therapeutic use</topic><topic>Efficiency</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical research</topic><topic>Molecular Probes - chemistry</topic><topic>Molecular Probes - therapeutic use</topic><topic>Nanodiamonds - chemistry</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Optical Imaging - methods</topic><topic>Pancreatic cancer</topic><topic>Photoacoustic Techniques - methods</topic><topic>Photochemotherapy - methods</topic><topic>Photothermal Therapy - methods</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Quantum Dots - therapeutic use</topic><topic>Review</topic><topic>Silver</topic><topic>Stem cells</topic><topic>Theranostic Nanomedicine - methods</topic><topic>Theranostic Nanomedicine - trends</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Jen-Shyang</creatorcontrib><creatorcontrib>Li, Yaxi</creatorcontrib><creatorcontrib>Yue, Wentong</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Jen-Shyang</au><au>Li, Yaxi</au><au>Yue, Wentong</au><au>Liu, Bin</au><au>Li, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-based Cell Trackers for Biomedical Applications</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>1923</spage><epage>1947</epage><pages>1923-1947</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>32042345</pmid><doi>10.7150/thno.39915</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1838-7640
ispartof Theranostics, 2020-01, Vol.10 (4), p.1923-1947
issn 1838-7640
1838-7640
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6993224
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biocompatibility
Bioluminescence
Breast cancer
Carbon
Cartilage
Catheters
Cell Tracking - methods
Cell Tracking - trends
Clinical trials
Contrast agents
Contrast Media - chemistry
Contrast Media - therapeutic use
Efficiency
Gastric cancer
Gene expression
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical research
Molecular Probes - chemistry
Molecular Probes - therapeutic use
Nanodiamonds - chemistry
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Optical Imaging - methods
Pancreatic cancer
Photoacoustic Techniques - methods
Photochemotherapy - methods
Photothermal Therapy - methods
Quantum dots
Quantum Dots - chemistry
Quantum Dots - therapeutic use
Review
Silver
Stem cells
Theranostic Nanomedicine - methods
Theranostic Nanomedicine - trends
Transplants & implants
title Nanoparticle-based Cell Trackers for Biomedical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-based%20Cell%20Trackers%20for%20Biomedical%20Applications&rft.jtitle=Theranostics&rft.au=Ni,%20Jen-Shyang&rft.date=2020-01-01&rft.volume=10&rft.issue=4&rft.spage=1923&rft.epage=1947&rft.pages=1923-1947&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.39915&rft_dat=%3Cproquest_pubme%3E2598255387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598255387&rft_id=info:pmid/32042345&rfr_iscdi=true