Photoacoustic properties of anterior ocular tissues

Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2019-05, Vol.24 (5), p.1
Hauptverfasser: Kubelick, Kelsey P, Snider, Eric J, Ethier, C Ross, Emelianov, Stanislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1
container_title Journal of biomedical optics
container_volume 24
creator Kubelick, Kelsey P
Snider, Eric J
Ethier, C Ross
Emelianov, Stanislav
description Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.
doi_str_mv 10.1117/1.JBO.24.5.056004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6992976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859582423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMozvj4AW6k4MZNa3LzaLIRVHwi6ELXIZMmTodOMyat4L83Mirq6l643zncw0HogOCKEFKfkOru_KECVvEKc4Ex20BTkpcSQJLNvGNJSyqEnKCdlBYYYymU2EYTmuUcMJ4i-jgPQzA2jGlobbGKYeXi0LpUBF-YfnCxDbEIduxMLIY2pdGlPbTlTZfc_tfcRc9Xl08XN-X9w_Xtxdl9aRnUQ-mlEWwGANYI6wzllAiwjQVsPXde1kI5TKRtGGuUA6MUE57MXEM5qz33dBedrn1X42zpGuv6IZpOr2K7NPFdB9Pqv5e-neuX8KaFUqBqkQ2OvwxieM2PD3rZJuu6zvQuB9YAFHAGFc_o0T90EcbY53gaJFdcAgOaKbKmbAwpRed_niFYf1aiic6VaGCa63UlWXP4O8WP4rsD-gEkhIfx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859582423</pqid></control><display><type>article</type><title>Photoacoustic properties of anterior ocular tissues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Kubelick, Kelsey P ; Snider, Eric J ; Ethier, C Ross ; Emelianov, Stanislav</creator><creatorcontrib>Kubelick, Kelsey P ; Snider, Eric J ; Ethier, C Ross ; Emelianov, Stanislav</creatorcontrib><description>Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.</description><identifier>ISSN: 1083-3668</identifier><identifier>ISSN: 1560-2281</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.24.5.056004</identifier><identifier>PMID: 31115200</identifier><language>eng</language><publisher>United States: S P I E - International Society for</publisher><subject>Absorption ; Absorption spectra ; Animals ; Chromophores ; Contrast agents ; Contrast media ; Contrast Media - chemistry ; Eye ; Eye (anatomy) ; Eye Color ; Glaucoma ; Hemoglobin ; Imaging ; Imaging techniques ; Iris ; Iris - physiology ; Lasers ; Light ; Medical imaging ; Melanin ; Melanins - chemistry ; Mesenchymal Stem Cells ; Molecular Imaging ; Ophthalmology ; Phantoms, Imaging ; Photoacoustic Techniques - methods ; Pigmentation ; Regression Analysis ; Scattering, Radiation ; Segments ; Spectrophotometry - methods ; Stem cells ; Swine ; Tissues ; Ultrasonic imaging</subject><ispartof>Journal of biomedical optics, 2019-05, Vol.24 (5), p.1</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</citedby><cites>FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2859582423/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2859582423?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,21388,27924,27925,33744,33745,43805,53791,53793,64385,64387,64389,72469,74302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31115200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubelick, Kelsey P</creatorcontrib><creatorcontrib>Snider, Eric J</creatorcontrib><creatorcontrib>Ethier, C Ross</creatorcontrib><creatorcontrib>Emelianov, Stanislav</creatorcontrib><title>Photoacoustic properties of anterior ocular tissues</title><title>Journal of biomedical optics</title><addtitle>J Biomed Opt</addtitle><description>Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Animals</subject><subject>Chromophores</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemistry</subject><subject>Eye</subject><subject>Eye (anatomy)</subject><subject>Eye Color</subject><subject>Glaucoma</subject><subject>Hemoglobin</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Iris</subject><subject>Iris - physiology</subject><subject>Lasers</subject><subject>Light</subject><subject>Medical imaging</subject><subject>Melanin</subject><subject>Melanins - chemistry</subject><subject>Mesenchymal Stem Cells</subject><subject>Molecular Imaging</subject><subject>Ophthalmology</subject><subject>Phantoms, Imaging</subject><subject>Photoacoustic Techniques - methods</subject><subject>Pigmentation</subject><subject>Regression Analysis</subject><subject>Scattering, Radiation</subject><subject>Segments</subject><subject>Spectrophotometry - methods</subject><subject>Stem cells</subject><subject>Swine</subject><subject>Tissues</subject><subject>Ultrasonic imaging</subject><issn>1083-3668</issn><issn>1560-2281</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUtLxDAUhYMozvj4AW6k4MZNa3LzaLIRVHwi6ELXIZMmTodOMyat4L83Mirq6l643zncw0HogOCKEFKfkOru_KECVvEKc4Ex20BTkpcSQJLNvGNJSyqEnKCdlBYYYymU2EYTmuUcMJ4i-jgPQzA2jGlobbGKYeXi0LpUBF-YfnCxDbEIduxMLIY2pdGlPbTlTZfc_tfcRc9Xl08XN-X9w_Xtxdl9aRnUQ-mlEWwGANYI6wzllAiwjQVsPXde1kI5TKRtGGuUA6MUE57MXEM5qz33dBedrn1X42zpGuv6IZpOr2K7NPFdB9Pqv5e-neuX8KaFUqBqkQ2OvwxieM2PD3rZJuu6zvQuB9YAFHAGFc_o0T90EcbY53gaJFdcAgOaKbKmbAwpRed_niFYf1aiic6VaGCa63UlWXP4O8WP4rsD-gEkhIfx</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kubelick, Kelsey P</creator><creator>Snider, Eric J</creator><creator>Ethier, C Ross</creator><creator>Emelianov, Stanislav</creator><general>S P I E - International Society for</general><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Photoacoustic properties of anterior ocular tissues</title><author>Kubelick, Kelsey P ; Snider, Eric J ; Ethier, C Ross ; Emelianov, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Animals</topic><topic>Chromophores</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemistry</topic><topic>Eye</topic><topic>Eye (anatomy)</topic><topic>Eye Color</topic><topic>Glaucoma</topic><topic>Hemoglobin</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Iris</topic><topic>Iris - physiology</topic><topic>Lasers</topic><topic>Light</topic><topic>Medical imaging</topic><topic>Melanin</topic><topic>Melanins - chemistry</topic><topic>Mesenchymal Stem Cells</topic><topic>Molecular Imaging</topic><topic>Ophthalmology</topic><topic>Phantoms, Imaging</topic><topic>Photoacoustic Techniques - methods</topic><topic>Pigmentation</topic><topic>Regression Analysis</topic><topic>Scattering, Radiation</topic><topic>Segments</topic><topic>Spectrophotometry - methods</topic><topic>Stem cells</topic><topic>Swine</topic><topic>Tissues</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubelick, Kelsey P</creatorcontrib><creatorcontrib>Snider, Eric J</creatorcontrib><creatorcontrib>Ethier, C Ross</creatorcontrib><creatorcontrib>Emelianov, Stanislav</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubelick, Kelsey P</au><au>Snider, Eric J</au><au>Ethier, C Ross</au><au>Emelianov, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoacoustic properties of anterior ocular tissues</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>24</volume><issue>5</issue><spage>1</spage><pages>1-</pages><issn>1083-3668</issn><issn>1560-2281</issn><eissn>1560-2281</eissn><abstract>Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.</abstract><cop>United States</cop><pub>S P I E - International Society for</pub><pmid>31115200</pmid><doi>10.1117/1.JBO.24.5.056004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2019-05, Vol.24 (5), p.1
issn 1083-3668
1560-2281
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6992976
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central
subjects Absorption
Absorption spectra
Animals
Chromophores
Contrast agents
Contrast media
Contrast Media - chemistry
Eye
Eye (anatomy)
Eye Color
Glaucoma
Hemoglobin
Imaging
Imaging techniques
Iris
Iris - physiology
Lasers
Light
Medical imaging
Melanin
Melanins - chemistry
Mesenchymal Stem Cells
Molecular Imaging
Ophthalmology
Phantoms, Imaging
Photoacoustic Techniques - methods
Pigmentation
Regression Analysis
Scattering, Radiation
Segments
Spectrophotometry - methods
Stem cells
Swine
Tissues
Ultrasonic imaging
title Photoacoustic properties of anterior ocular tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoacoustic%20properties%20of%20anterior%20ocular%20tissues&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Kubelick,%20Kelsey%20P&rft.date=2019-05-01&rft.volume=24&rft.issue=5&rft.spage=1&rft.pages=1-&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.24.5.056004&rft_dat=%3Cproquest_pubme%3E2859582423%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859582423&rft_id=info:pmid/31115200&rfr_iscdi=true