Photoacoustic properties of anterior ocular tissues
Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targ...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical optics 2019-05, Vol.24 (5), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Journal of biomedical optics |
container_volume | 24 |
creator | Kubelick, Kelsey P Snider, Eric J Ethier, C Ross Emelianov, Stanislav |
description | Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment. |
doi_str_mv | 10.1117/1.JBO.24.5.056004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6992976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859582423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMozvj4AW6k4MZNa3LzaLIRVHwi6ELXIZMmTodOMyat4L83Mirq6l643zncw0HogOCKEFKfkOru_KECVvEKc4Ex20BTkpcSQJLNvGNJSyqEnKCdlBYYYymU2EYTmuUcMJ4i-jgPQzA2jGlobbGKYeXi0LpUBF-YfnCxDbEIduxMLIY2pdGlPbTlTZfc_tfcRc9Xl08XN-X9w_Xtxdl9aRnUQ-mlEWwGANYI6wzllAiwjQVsPXde1kI5TKRtGGuUA6MUE57MXEM5qz33dBedrn1X42zpGuv6IZpOr2K7NPFdB9Pqv5e-neuX8KaFUqBqkQ2OvwxieM2PD3rZJuu6zvQuB9YAFHAGFc_o0T90EcbY53gaJFdcAgOaKbKmbAwpRed_niFYf1aiic6VaGCa63UlWXP4O8WP4rsD-gEkhIfx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859582423</pqid></control><display><type>article</type><title>Photoacoustic properties of anterior ocular tissues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Kubelick, Kelsey P ; Snider, Eric J ; Ethier, C Ross ; Emelianov, Stanislav</creator><creatorcontrib>Kubelick, Kelsey P ; Snider, Eric J ; Ethier, C Ross ; Emelianov, Stanislav</creatorcontrib><description>Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.</description><identifier>ISSN: 1083-3668</identifier><identifier>ISSN: 1560-2281</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.24.5.056004</identifier><identifier>PMID: 31115200</identifier><language>eng</language><publisher>United States: S P I E - International Society for</publisher><subject>Absorption ; Absorption spectra ; Animals ; Chromophores ; Contrast agents ; Contrast media ; Contrast Media - chemistry ; Eye ; Eye (anatomy) ; Eye Color ; Glaucoma ; Hemoglobin ; Imaging ; Imaging techniques ; Iris ; Iris - physiology ; Lasers ; Light ; Medical imaging ; Melanin ; Melanins - chemistry ; Mesenchymal Stem Cells ; Molecular Imaging ; Ophthalmology ; Phantoms, Imaging ; Photoacoustic Techniques - methods ; Pigmentation ; Regression Analysis ; Scattering, Radiation ; Segments ; Spectrophotometry - methods ; Stem cells ; Swine ; Tissues ; Ultrasonic imaging</subject><ispartof>Journal of biomedical optics, 2019-05, Vol.24 (5), p.1</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</citedby><cites>FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2859582423/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2859582423?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,21388,27924,27925,33744,33745,43805,53791,53793,64385,64387,64389,72469,74302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31115200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubelick, Kelsey P</creatorcontrib><creatorcontrib>Snider, Eric J</creatorcontrib><creatorcontrib>Ethier, C Ross</creatorcontrib><creatorcontrib>Emelianov, Stanislav</creatorcontrib><title>Photoacoustic properties of anterior ocular tissues</title><title>Journal of biomedical optics</title><addtitle>J Biomed Opt</addtitle><description>Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Animals</subject><subject>Chromophores</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemistry</subject><subject>Eye</subject><subject>Eye (anatomy)</subject><subject>Eye Color</subject><subject>Glaucoma</subject><subject>Hemoglobin</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Iris</subject><subject>Iris - physiology</subject><subject>Lasers</subject><subject>Light</subject><subject>Medical imaging</subject><subject>Melanin</subject><subject>Melanins - chemistry</subject><subject>Mesenchymal Stem Cells</subject><subject>Molecular Imaging</subject><subject>Ophthalmology</subject><subject>Phantoms, Imaging</subject><subject>Photoacoustic Techniques - methods</subject><subject>Pigmentation</subject><subject>Regression Analysis</subject><subject>Scattering, Radiation</subject><subject>Segments</subject><subject>Spectrophotometry - methods</subject><subject>Stem cells</subject><subject>Swine</subject><subject>Tissues</subject><subject>Ultrasonic imaging</subject><issn>1083-3668</issn><issn>1560-2281</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUtLxDAUhYMozvj4AW6k4MZNa3LzaLIRVHwi6ELXIZMmTodOMyat4L83Mirq6l643zncw0HogOCKEFKfkOru_KECVvEKc4Ex20BTkpcSQJLNvGNJSyqEnKCdlBYYYymU2EYTmuUcMJ4i-jgPQzA2jGlobbGKYeXi0LpUBF-YfnCxDbEIduxMLIY2pdGlPbTlTZfc_tfcRc9Xl08XN-X9w_Xtxdl9aRnUQ-mlEWwGANYI6wzllAiwjQVsPXde1kI5TKRtGGuUA6MUE57MXEM5qz33dBedrn1X42zpGuv6IZpOr2K7NPFdB9Pqv5e-neuX8KaFUqBqkQ2OvwxieM2PD3rZJuu6zvQuB9YAFHAGFc_o0T90EcbY53gaJFdcAgOaKbKmbAwpRed_niFYf1aiic6VaGCa63UlWXP4O8WP4rsD-gEkhIfx</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kubelick, Kelsey P</creator><creator>Snider, Eric J</creator><creator>Ethier, C Ross</creator><creator>Emelianov, Stanislav</creator><general>S P I E - International Society for</general><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Photoacoustic properties of anterior ocular tissues</title><author>Kubelick, Kelsey P ; Snider, Eric J ; Ethier, C Ross ; Emelianov, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-f8a64b222ca6cea353162cdc20cf5ef8769e018cd44d9e2a9946f1bed3547f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Animals</topic><topic>Chromophores</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemistry</topic><topic>Eye</topic><topic>Eye (anatomy)</topic><topic>Eye Color</topic><topic>Glaucoma</topic><topic>Hemoglobin</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Iris</topic><topic>Iris - physiology</topic><topic>Lasers</topic><topic>Light</topic><topic>Medical imaging</topic><topic>Melanin</topic><topic>Melanins - chemistry</topic><topic>Mesenchymal Stem Cells</topic><topic>Molecular Imaging</topic><topic>Ophthalmology</topic><topic>Phantoms, Imaging</topic><topic>Photoacoustic Techniques - methods</topic><topic>Pigmentation</topic><topic>Regression Analysis</topic><topic>Scattering, Radiation</topic><topic>Segments</topic><topic>Spectrophotometry - methods</topic><topic>Stem cells</topic><topic>Swine</topic><topic>Tissues</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubelick, Kelsey P</creatorcontrib><creatorcontrib>Snider, Eric J</creatorcontrib><creatorcontrib>Ethier, C Ross</creatorcontrib><creatorcontrib>Emelianov, Stanislav</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubelick, Kelsey P</au><au>Snider, Eric J</au><au>Ethier, C Ross</au><au>Emelianov, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoacoustic properties of anterior ocular tissues</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>24</volume><issue>5</issue><spage>1</spage><pages>1-</pages><issn>1083-3668</issn><issn>1560-2281</issn><eissn>1560-2281</eissn><abstract>Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.</abstract><cop>United States</cop><pub>S P I E - International Society for</pub><pmid>31115200</pmid><doi>10.1117/1.JBO.24.5.056004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of biomedical optics, 2019-05, Vol.24 (5), p.1 |
issn | 1083-3668 1560-2281 1560-2281 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6992976 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central |
subjects | Absorption Absorption spectra Animals Chromophores Contrast agents Contrast media Contrast Media - chemistry Eye Eye (anatomy) Eye Color Glaucoma Hemoglobin Imaging Imaging techniques Iris Iris - physiology Lasers Light Medical imaging Melanin Melanins - chemistry Mesenchymal Stem Cells Molecular Imaging Ophthalmology Phantoms, Imaging Photoacoustic Techniques - methods Pigmentation Regression Analysis Scattering, Radiation Segments Spectrophotometry - methods Stem cells Swine Tissues Ultrasonic imaging |
title | Photoacoustic properties of anterior ocular tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoacoustic%20properties%20of%20anterior%20ocular%20tissues&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Kubelick,%20Kelsey%20P&rft.date=2019-05-01&rft.volume=24&rft.issue=5&rft.spage=1&rft.pages=1-&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.24.5.056004&rft_dat=%3Cproquest_pubme%3E2859582423%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859582423&rft_id=info:pmid/31115200&rfr_iscdi=true |